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Phytophthora es una familia de fitopatógenos de gran trascendencia ecológica debido a la
vasta variedad de plantas a las que puede atacar (silvestres y de interés comercial). Por
ejemplo, Phytophthora Capsici, ataca a una amplia gama de especies alimenticias, como la
papa, jitomate y chile. En 2014, en el país se reportaron grandes pérdidas económicas debido a
las afectaciones de P. Capsici en plantaciones de chile. En la región de San Martín Texmelucan,
se reportan pérdidas entre el 90% y 100% de las plantaciones de chile chilaca y poblano. En la
región de Tehuacán, Phytophthora merma la producción de amaranto y chía. Similarmente, la
región de Atlixco es sumamente afectada por P. Cinnamomi, responsable de la enfermedad
conocida como la tristeza del aguacatero, provocando la muerte de miles de árboles. Además
de las consecuencias económicas provocadas por el bajo rendimiento de la plantación y la
mala calidad de los productos, se propicia la reducción de la superficie productora y la
sustitución o abandono de los cultivos. Por sus características fisiológicas particulares, no
existen tratamientos químicos eficaces para el control de Phytophthora, por lo que es necesario
proponer y analizar la eficacia de estrategias alternativas que permitan disminuir los efectos
que produce en las plantaciones.

En artículos recientes, hemos demostrado que la configuración de las plantaciones es
fundamental en el control de ciertas plagas y fitopatógenos. Por ejemplo, si una variedad de
planta es susceptible a un fitopatógen, es recomendable sembrar dejando algunas celdas
vacías,que pueden ser ocupadas por una planta más resistente. Sin embargo, en situaciones
donde el manejo y cuidados de las plantas sean específicos, la recomendación es considerar
plantaciones estructuradas, muy similares a los sistemas milpa. Con el uso de estas estrategias
es posible disminuir los efectos de la propagación de fitopatógenos y plagas. Sin embargo,
existen condiciones particulares que aún no se han estudiado. Por ejemplo, en el norte del
Estado de Puebla, la vainilla se siembra acompañada de una planta tutor, en terrenos con una
pendiente considerable. Esta condición marca un cambio sustancial en las condiciones de la
propagación de la enfermedad. Por otra parte, existen otra clase de fitopatógenos o plagas que
tienen propiedades de movilidad diferentes, por ejemplo la arañita roja realiza caminatas sobre
el follaje de las plantas, o la roya del café es propagada a través de las salpicaduras
provodacas por las gotas de lluvia. Sin embargo, comparten con Phytophthora la característica
de propagación sobre las plantas que son adyacentes. Todos estos problemas planteados
requieren de atención y pueden ser abordados con las propuestas desarrolladas en nuestro
grupo de trabajo.
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We use percolation theory to propose a strategy that increases the production yield of plants with high
susceptibility to a pathogen plague. This strategy consists in sowing a second variety with a lower susceptibility.
The percolation threshold is determined as a function of the plant density, the mixture of plants, the pathogen
susceptibilities, and the initial percentage of inoculated soil. Moreover, we provide conditions to prevent the
formation of a spanning cluster of infected plants. We present an application of this strategy to a particular
chili plantation. Under controlled conditions, we measure the pathogen susceptibilities to different strains of
Phytophthora capsici for three varieties of chili peppers with high commercial value in Mexico. Then we simulate
the propagation process of the pathogen on nearest and next-to-nearest-neighbor square lattices. We find that the
production yield of plantations with the highest susceptibility can be significantly increased as a result of this
novel application of percolation theory.

DOI: 10.1103/PhysRevE.98.062409

I. INTRODUCTION

Percolation theory is a branch of statistical physics that
addresses transport phenomena in porous media [1,2]. It ex-
plains, for instance, the conditions under which filtration of
water through a wall or how the current flow goes through an
electrical mesh can occur [3–6]. The basic idea in percolation
theory is to represent porous media as a lattice whose sites
either permit the flow (and then are said to be occupied) or not.
Each site has a probability p (independent of the neighboring
sites) of being designated as occupied or, equivalently, a
probability 1 − p of being designated as empty [4]. Evidently
the value of p determines if the transport phenomenon takes
place or not. If p is too small, then there are too few occupied
sites and the transport process cannot occur. Contrarily, if p
takes on a value close to 1, then there are plenty of occupied
places and one expects transport to occur [4–8]. The case of
interest is that in which the number of occupied sites is just
enough to allow the transport phenomenon to happen. In such
a situation, there is a critical value pc, called the percolation
threshold, that bounds from below the values of p for which
the transport phenomena will occur. Its determination is one
of the fundamental problems in percolation theory [6]. Since
finding the percolation threshold analytically is not possible
in most applications, computational methods have proved to
be an effective alternative [4,6–8].

Percolation theory has been applied in a wide variety
of situations, ranging from the study of the formation of
galactic structures [9–11] to super-cooled water [12,13],
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fragmentation [14–16], porous materials [2,17,18], earth-
quakes [19–21], forest fires [22–24], deforestation [25], and
the properties of the quark-gluon plasma [26–28].

An application of particular interest is the propagation of
diseases where a susceptible-infected-recovered (SIR) model
is used to determine the critical number of edges that would
prevent the propagation of the disease in a certain population
[29–37]. In particular, disease propagation models for plants
have been proposed in Refs. [38–43] in which different media
are considered for pathogen transport, like thin films of water
or air.

The interest in applying models like the one described
above is due to the great threat that plagues of insects or
gastropods, on one hand, and the spread of diseases caused
by bacteria, fungi, and oomycetes, on the other, pose on the
production of vegetables. The effects range from a reduced
production to the complete loss of a plantation or even the
transmission of the agent to other plantations sharing the ir-
rigation system, for example. The associated economic losses
render the study of the propagation of disease agents and its
eventual control necessary.

In the taxonomic class of oomycetes we find the organisms
that cause epiphytic interactions with the most destructive
effects on crops: the genus Phytophthora (from Greek, mean-
ing literally phyto, “plant,” and phthora, “destroyer” [44])
[45,46]. Long considered as lower fungi, these organisms are
more closely related to brown algae and green plants [47,48].
However, they share morphological characteristics with true
fungi (Eumycota), such as mycelial growth and the dispersion
of spores of mitotic or asexual origin. The latter have a
distinctive feature that causes them to have a great impact
on the plant kingdom as phytopathogens: their movement by
means of flagella [49,50].

These biflagellate zoospores have a mastigoneous flag-
ellum with microfibrils that serve to assist or guide
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movement. They can disperse through water films or soil
moisture, including those on the surface of plants. These
zoospores emerge from mature sporangia in quantities of 20
to 40 motile zoospores, which swim chemotactically toward
the plants [49,51,52].

When the zoospores reach the surface of the roots, they lose
their flagella, encyst in the host, and form a germination tube
through which they penetrate the surface of the plant [53,54].
However, many species of Phytophthora can persist as sapro-
phytes if the environmental conditions are not appropriate but
become parasitic in the presence of susceptible hosts [46,52].

Damages produced by the species of the genus Phytoph-
thora include rotting in seedlings, tubers, corms, the base
of the stem and other organs, staying mainly at the root of
many plant species [55]. The variation in infection caused
by the different species of Phytophthora is associated with
the environment conditions, which usually include optimal
temperature and humidity, exhibiting a transition of rapid
propagation in edaphic media of high humidity. Irrigation is
then considered one of the most important means of dissemi-
nation since it facilitates the spreading of zoospores [49,56].

Due to the physiology of the oomycetes, most of the
fungicides have no effect on them. Therefore, research on non-
chemical strategies that minimize or eliminate the propagation
of the pathogen is necessary.

In this work we model the propagation of the pathogen
Phytophthora as a transport phenomenon over a plantation.
As happens with some diseases, certain varieties of plants
have an intrinsic tolerance to Phytophthora [57]. These can
inhibit the spread of the pathogen and therefore may be
used as protective barriers for plants with less resistance. We
incorporate this idea into our model, considering plantations
comprising a mixture of varieties with high and low tolerance
to the pathogen. Since it is a priori unknown whether one
particular seed of a given variety will yield a nontolerant
plant, we assume the latter are uniformly distributed over the
plantation.

We use percolation theory to propose a strategy that sup-
presses or at least minimizes the spread of Phytophthora
capsici in chili plantations. We are interested in predicting
the conditions on the parameters of the crops that reduce the
propagation of the disease and maximize the total plant pro-
duction. To this end, we model plantations as square matrices
with a plant in each of their cells.

We report the pathogen susceptibility for three varieties of
chili plants. With these data we are able to find a way to pre-
vent the disease from propagating over the whole plantation
for the most susceptible chili variety. By mixing with a second
chili variety, our model yields the mixing proportion and the
plant density for a given initial percentage of inoculated soil
that would contain and prevent the pathogen from spreading.

This paper is organized as follows. In Sec. II, we describe
the model for pathogen propagation over a plantation in terms
of percolation theory. Then we find the percolation threshold
for these systems implemented in regular lattices as a function
of the mixing proportion, the pathogen susceptibilities, and
the initial percentage of inoculated soil. Section III describes
the experimental setup for the determination of the pathogen
susceptibility of four varieties of Phytophthora for three
commercially relevant varieties of chili: “Arbol,” “Serrano,”

TABLE I. Percolation threshold for different regular lattices.
Data taken from Ref. [4].

Lattice pc

2N square 0.592...
3N square 0.407...
Triangular 0.5
Hexagonal 0.697...

and “Poblano.” In Sec. IV we report the susceptibility mea-
surements and obtain the mixing thresholds for which the
disease will only propagate over finite clusters even if all
cells in the plantation are sowed. In addition, for the case
of high susceptibility measured for the “Arbol” variety when
exposed to P. capsici, we determine by computer simulation
the total production yield as a function of the occupation
probability and the mixing proportion with a second chili
variety of lower susceptibility. A discussion and a comparison
with the alternate rows sowing strategy is included in Sec. V.
Section VI contains the conclusions of this work.

II. MODEL

The basic percolation model studies the formation of
clusters on regular lattices with N sites, where each site is
available to the process with a probability p. It is of particular
interest to determine the percolation threshold pc, that is, the
minimum probability at which a spanning cluster extending
across the percolating system appears. This critical density
depends on the properties of the lattice, as illustrated in
Table I. There we show the percolation threshold for the near-
est (denoted by 2N) and next-to-nearest-neighbor (denoted by
3N) square, triangular, and hexagonal lattices.

A. Percolation threshold

In this work the sites in the lattice represent plants of two
different varieties growing on specific soil. Each variety has a
particular pathogen susceptibility, which is the probability of
being infected by a specific pathogen. We denote by A and B
the different plant varieties in the plantation, while χA and χB

denote their pathogen susceptibilities.
We consider a regular lattice with a probability of occupa-

tion p. The available sites in the lattice can be occupied by
two different types of plants, distributed in a homogeneous
way according to a certain proportion. We define M as the
probability that an available site is occupied by a plant of
variety A, so (1 − M ) it is the probability that an available
site is occupied by a plant of variety B. We are interested
in studying the spread of the disease on plants which can
get infected. Because the pathogen susceptibilities may be
different from one, then the spread of the disease occurs on
a percolating system with an effective probability peff that
depends explicitly on p, χA, χB , and M .

In a percolating system with given p, χA, χB , and M ,
the average number of effective sites available for the spread
of the disease can be written as Ndis = ⟨NA⟩ + ⟨NB⟩, where
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⟨NA,B⟩ is the average number of susceptible sites of type A or
B, which can be calculated as

⟨NA⟩ = NMχAp; (1)

⟨NB⟩ = N (1 − M )χBp. (2)

In addition to the average number of plants that can get
infected, it is necessary to take into account the fraction
of cells that are inoculated with the pathogen. These can
be located in occupied sites or in plants that are resistant.
Even in these cases, the pathogen may spread to neighboring
plants. Defining I as the probability that a cell in the lattice
is inoculated, we have that the average number N of cells
through which the propagation process can occur is

N = Npeff = Ndis + (N − Ndis)I, (3)

where the second term on the right-hand side has been added
to consider the inoculated sites that match the situation de-
scribed above. This last equation corresponds to a percolation
process that occurs on a lattice with an effective probability
given by

peff = I + (1 − I )[MχA + (1 − M )χB]p. (4)

Equation (4) is crucial, since it determines the formation
properties of clusters of plants that have been infected by
the pathogen, including those plants that do not manifest the
disease but can propagate it. The existence of the spanning
cluster of infected plants occurs when the value of peff in
Eq. (4) coincides with that of the percolation threshold of the
lattice. In that case, the percolation threshold of the system is
given by

p∗
c = pc − I

(1 − I )[MχA + (1 − M )χB]
. (5)

In general, there is not a direct way to compare p∗
c to pc.

However, it is possible to determine specific conditions for
which a spanning cluster will not exist. If we consider that
p∗

c can only take values between zero and one, then the no
percolation condition for the values of I , M , χA, and χB is
(1 − I )[MχA + (1 − M )χB] ! pc − I . This is an important
condition because once knowing the pathogen susceptibilities
of the plants, we can determine the proportion M that guaran-
tees that no percolating cluster is formed, despite a fraction I
of soil area might be inoculated.

B. Disease incidence

Another important parameter that can be calculated is the
extent of disease incidence on the sown plants. Note that
independently of the lattice, the pathogen can spread on plants
that are susceptible and belong to the same cluster.

Because some pathogens can present latency stages when
they are in an adverse environment, any point in the lattice
can be the source of infection, even a place with no plant
or with a plant resistant to the pathogen. This fact highly
complicates the determination of an analytical result for the
percentage of the plantation that can be damaged by the
spread of the disease. If the initial point of infection is an
empty place or a place occupied by a plant resistant to the
pathogen, then the disease can be transmitted to more than

FIG. 1. Example of an initially infected point (red zero) sur-
rounded by two adjacent and disjoint clusters delimited by a blue
line for a nearest-neighbor square lattice with p = 0.6.

one adjacent cluster as shown in Fig. 1, where an initial point
of infection allows the pathogen to spread over two disjoint
clusters. For this reason we expect the average number of
cells where the pathogen causes damage to be slightly larger
than the average cluster size, for peff ∼ pc, as a result of
the connecting effect between disjoint clusters by the initial
infection point. On the other hand, for peff < pc, we expected
that the contribution of the initial point of infection be through
finite clusters or isolated sites. Finally, for peff > pc, the initial
point of infection belongs to the spanning cluster as peff takes
values greater than the percolation threshold. Consequently, if
there is more than one initial point of infection in the system,
we expect the appearance of cells connecting two adjacent
disjoint clusters to magnify. Evidently, this effect does not
scale linearly, since it may happen that two initial points
transmit the disease to the same cluster. In Sec. IV we will
discuss the implications of considering several initial points.

Finally, if we know the pathogen susceptibilities χA and χB

of two varieties, then we can predict the mixture of seeds and
the fraction of sown cells that will maximize the total yield
obtained from the whole production of A and B, which may
be computed as the number of cells for which the pathogen
could not spread.

C. Simulation on square lattices

Traditionally, crops are planted in parallel rows on the soil,
so that the seeds are sown in a square lattice-type arrangement.
The best approximation to represent the system is a Boolean
matrix whose values on each entry depend on whether seed
is deposited or not in the cell. The cells are spaced according
to the maximum displacement length that the pathogen can
travel. We do not know a priori what value corresponds to a
given cell (this is, we do not know whether a seed was sown
there). Therefore, we assign a 1 to each entry in the matrix
according to the occupation probability p. Given a proportion
mixture 0 < M < 1, we assign randomly to each occupied
cell (i.e., to each entry in the matrix with a value of 1) a
plant variety A or B. Specifically, we generate for each cell
a random number x between zero and one and define that, if
x < M , then a plant of variety A has been sown. Otherwise, it
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FIG. 2. (a) Representation of a percolating system with occupa-
tion probability p as a square matrix. (b) Representation of plants of
types A and B randomly sown in the cells of the matrix according to
a predefined proportion M = 0.6.

means that a plant of variety B has been sown. Figure 2 shows
an example of the random configuration of the mixture of the
two plant varieties represented as a percolating system.

The inoculated cells in this initial configuration are taken
in a uniform random way over the matrix with a probability I ,
which represents the ratio of inoculated cells in the matrix.

Once the cells are inoculated, the pathogen might or might
not be propagated to neighboring plants, depending on the
pathogen susceptibility χ of each variety of plant. In practice,
a plant of type A (B ) gets infected and develops the disease if
a generated random number is less than χA (χB ); otherwise,
the plant remains healthy. If the plant is infected and becomes
sick, then its cell value is changed from one to zero. Figure 3
shows an outline of this infection propagation process. The
matrix in the upper left corner represents the initial distribu-
tion of plants sown with a mixture M , while the matrix on the
right shows the result of exposure to the pathogen.

Finally, we take as the production yield for each plant
variety the number of plants still alive after the infection has
spread. With this method, we simulate the behavior of the
plant production yield as a function of the probability p and
the mixture M .

FIG. 3. The pathogen propagation process. The initial configu-
ration (top left) is exposed to the pathogen and each plant has a
probability I of being infected. The infected plants are considered as
dead and the respective cells in the matrix are marked with a purple
zero (right).

III. MATERIAL AND METHODS

A. Substrate preparation

The substrate preparation was carried by mixing peat moss
and seived soil (2-mm mesh) in a 1:2 volume-volume mixture.
The homogeneous mixture was placed in plastic double bags
of 6 kg of high density polyethylene. The bags with the
substrate were sterilized in an electric autoclave at 121 ◦C and
6.8 kg/cm2 for 30 min for 2 consecutive days.

B. Preparation and treatment of seeds

Three varieties of chili seed were used: “chile de Arbol”
from Michoacán, “chile Serrano” from the state of Nayarit,
and “chile Poblano” from the state of Puebla. For each one,
100 seeds without deformities were selected. Groups of 100
seeds were selected and weighted for carrying the tests. Each
pack of seeds was deflated by adding approximately 20 ml of
hydrogen peroxide (9 vol. H2O2) in a beaker for a period of
20 min and then rinsed with distilled water for three times and
allowed to stand for 2 days immersed in sterile distilled water
to promote germination.

C. Preparation of bioassays

For each bioassay, aluminium trays of approximately 3 kg
capacity were used. To each tray was added 1.5 kg of sterile
substrate, and on it the seed was spread homogeneously and
finally covered with 1 kg more of substrate, moistened with
enough water, and covered with black bags.

The trays were watered daily with enough water to main-
tain the humidity until beginning to see the buds of seedlings.
The initial growth was observed eight days after sowing. From
this moment, it was fertilized every 7 days with 1.9 g/l of the
fertilizer blue Nitrofoska.

D. Inoculation of soil with oomycetes

The microorganisms used were taken from the phy-
topathogenic oomycete strain collection of the Biotechnology
Academic Program at the Universidad Politécnica de Puebla.
The isolates were reactivated in a selective agar-corn medium
added with a mixing of antibiotics (pimaricin, 0.01 g/l; ampi-
cillin, 0.250 g/l; rifampicin, 0.01 g/l).

Each oomycete used was inoculated in the same sterile
substrate used for the preparation of the trays. Segments of
the growths were inoculated in plastic bags containing 500 g
of substrate. The bags were mixed by shaking every 2 days for
3 weeks to ensure the growth of the oomycete throughout the
substrate. They were incubated at room temperature. For each
inoculated substrate the presence of the respective oomycete
was verified by seeding 1 ml of a 1:9 dilution inoculated sub-
strate: water in cornmeal medium-agar added with antibiotics
(pimaricin, 0.01 g/l; ampicillin, 0.250 g/l; rifampicin, 0.01
g/l). It was incubated at 27 ◦C for 5 days.

E. Inoculation of trays

On average, each tray planted contained about 80 seedlings
and each of the oomycetes was inoculated into three trays
corresponding to the three varieties of chili. The inoculation
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TABLE II. Experimental results of the pathogen susceptibilities
for different Capsicum varieties: “Chile Serrano” (χS), “Chile de
Arbol” (χA), and “Chile Poblano” (χP ), exposed to several Phytoph-
thora isolates.

Oomycete χS χA χP Kruskal-Wallis test

PcV01 0.60 1.0 0.89 Pr < 0.0001 A = P

PcV51 0.46 0.27 0.76 Pr < 0.0006
PcV77 0.64 0.36 0.04 Pr < 0.0001 but A = P

PcV90 0.40 0.10 0.19 Pr < 0.0002 all the same
Blank test 0 0 0

was carried out by adding in the center of each tray 10 g of
soil infested by the oomycete corresponding to the treatment.
Then it was irrigated with water to favor infestation. Before
the inoculation, a census of plants was carried out for each
tray.

The fertilization of the plants was stopped at the microor-
ganism inoculation. However, the humidity was maintained at
field capacity during the whole time of the test, and 35 days
after sowing, live plants were counted in each tray and the
survival percentage was calculated.

IV. RESULTS

In this section we show results for the pathogen suscepti-
bility of chili plants of the “Arbol,” “Serrano,” and “Poblano”
varieties exposed to the pathogen oomycete P. capsici. We
also present the conditions predicted by our model that max-
imize the production of mixtures of two of these varieties of
chili plants when the portion of inoculated cells is 1%, 5%,
and 10%.

A. Susceptibility of chili varieties exposed to different P. capsici
isolates

We obtained the survival rate experimentally by exposing
a number of plants to the pathogen and noting the number
of alive plants after the period of time mentioned in Sec. III.
We denote the survival rate of a plant type exposed to a
pathogen (expressed as a percentage) as P , then, the pathogen
susceptibility is calculated as

χ = 1 − P
100

. (6)

Table II shows the pathogen susceptibility calculated with
Eq. (6) for the varieties of “Serrano” (S), “Arbol” (A), and
“Poblano” (P ) plants of chili exposed to various strains of
the pathogen P. capsici denoted by PcV and a number to
distinguish them from each other.

We actually measured susceptibilities for 20 different
strains (including their respective blank tests). These mea-
surements were carried out in a period of approximately 5
months since the procedure described in Sec. III was repeated
for all 20 strains in a small green house. The space and time
limitation precluded the measurements to be performed more
than once. We report susceptibility values for the four strains
we consider to be representative for the analysis done in this
study. On the other hand, we used Kruskal-Wallis tests to
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FIG. 4. Examples of conditions for no percolation in regular
lattices when the density of inoculated cells is small (I → 0) for
values of χA = 1.00 (a), 0.75 (b), 0.50 (c), 0.25 (d), when the
pathogen propagates over 2N square (red inverse diagonal filled),
3N square (green inverse diagonal filled), triangular (blue diagonal
filled), and hexagonal (yellow filled) lattices.

determine that at least two of the compared groups per strain
are significatively different whenever the distribution of their
data was not a normal distribution. In Table II Pr denotes the
probability that a false negative occurred. The small values
we obtained mean the three chilis actually have different
susceptibilities to the pathogen.

Using the data in Table II, we found the conditions on
M and p that optimize the production of the three possible
mixtures of two varieties of chili: A-P , A-S, and P -S.

B. Regular lattices

As mentioned in Sec. II A, depending on the values of
the pathogen susceptibility of each plant, we can determine
the values of M for which the pathogen will only spread
on finite clusters, even if all cells are sown. In Fig. 4 we show
the combinations of pathogen susceptibility χB and mixture
M that prevent the formation of the spanning cluster for fixed
χA = 1.00, 0.75, 0.50, and 0.25 in different regular lattices in
the limit I → 0, corresponding to a single initial inoculation
point.

In an analog way, we determined the conditions on M
for given values of I that produce no percolation for the
pathogen susceptibilities found experimentally. This allowed
us to compute the critical mixture M at which we predict the
infection will only spread to finite clusters even if all cells are
sown, as is shown in Fig. 5. In this context, M = 0 (M = 1)
means only plants with the highest (lowest) susceptibility
were sown. Note that the case M = 1 can occur as long
as one of the plants has a susceptibility small enough to
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FIG. 5. Conditions for no percolation in 2N (crosses), 3N (stars),
triangular (triangles), and hexagonal (circles) lattices of different
chili plants mixtures: A-P (purple), A-S (green), and P -S (red)
exposed to the strains PcV01 (a), PcV51 (b), PcV77 (c), and PcV90
(d) considering three values of inoculated cells density I = 0.01,
0.05, and 0.10.

suppress the pathogen spreading. Such is the case for the
PcV90 strain for which the three varieties of chili have small
susceptibilities as shown in Fig. 5(d). As it can be seen in
Fig. 5, almost all combinations of chili plants in almost all the
regular lattices yield M = 1. On the other hand, for the cases
of strains PcV51, Fig. 5(b), and PcV77, Fig. 5(c), there are
several values of the mixture different from 1. In these cases,
a more resistant variety of chili must be introduced to avoid
the spread of the disease over the most susceptible plant. The
most interesting case occurs when plants are exposed to the
strain PcV01, Fig. 5(a), since we only found mixing values
where the disease does not spread for hexagonal lattices. This
singular case is analyzed in Sec. IV C, where we determine
conditions for which the production of plants is optimized.

C. Simulation on square lattices

To estimate the production yield as a function of the
probability of occupation p and the mixture M , we perform
simulations in square matrices of size 100 × 100. We start
with initial values of 0.05 for both p and M . First, we increase

the value of p up to 0.95, in increments of !p = 0.05. We
then increase the value of M in steps of size !M = 0.05
repeating the scan in p for each value of M , up to M = 0.95.
The simulation was performed 2 × 104 times for each pair of
values of p and M , for the three possible chili combinations:
P -S, A-P , and S-A, using the pathogen susceptibilities re-
ported in Table II.

In Fig. 6 we show the production yield obtained by com-
puter simulation for the P -S mixture in the presence of
the pathogen PcV01 with different densities of inoculated
soil (I = 0.01, I = 0.05, and I = 0.1) in a nearest-neighbor
square lattice. The darkest areas indicate the values of density
of plants p and mixture M for which the production yield is
maximized.

Figure 7 shows level curves of the production yield for
different densities of inoculated cells in nearest neighbors
(red lines) and next-to-nearest-neighbor (blue lines) square
lattices. The production levels were obtained through extrapo-
lation using cubic splines between adjacent points in the p-M
plane. Then the level curves of the results obtained by com-
puter simulation were determined. The curves on the graphs in
Fig. 7 bound the region where the maximum production yield
reaches a certain value, which is indicated by a label on each
line.

Finite-size effects on the production yield curves

As is usual in percolation theory some dependence of
the observed quantities on the system size is expected: the
so-called finite-size effects [58–61]. In our case the system
size corresponds simply to the matrix size (L × L) which
we use in our simulations. To observe these effects we study
the behavior of the 35%, 45%, and 55% production level
curves for the P -S mixture shown in Fig. 7(a) as a function
of L. Figure 8 shows these curves for I = 0.01 in a nearest-
neighbor square lattice for different matrix sizes.

It is clear that dependence of the production curves on L is
rapidly lost. For occupation probabilities below 0.6 the curves
are practically independent of L, in agreement with the fact
that the effective probability of the simulated systems is low
(peff ! 0.52 for all M) and therefore the process propagates
over finite clusters. In contrast, for larger p values, larger
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FIG. 6. Simulation results for the production of cells with alive plants after the spreading of the disease on the chili mix P -S for values of
inoculated cells I = 0.01 (a), 0.05 (b), and 0.10 (c). Regions in dark represent the higher production yields.
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FIG. 7. Level curves for the production yield in terms of the density of plants and the mixture for the three combinations of chili plants
at different inoculation densities I = 0.01 (solid lines), I = 0.05 (dashed lines), and I = 0.10 (dotted lines). Top row (red curves) correspond
to a nearest-neighbor square lattice for the P -S(a), A-P (b), and S-A (c) mixtures. Bottom row (blue curves) correspond to a next-to-nearest-
neighbor square lattice for the P -S (d), A-P (e), and S-A (f) mixtures.

clusters are formed with corresponding larger fluctuations of
their probability distribution. Furthermore, the absolute num-

FIG. 8. Finite-size effect on the production yield lines for the
P -S mixing exposed to PcV01 with a percentage of inoculated soil
I = 0.01 in a nearest-neighbors square lattice.

ber of initially inoculated sites grows as IL2 so the number
of inoculated sites is, for example, two orders of magnitude
less in a system with L = 20 than that of a system with
L = 200. This means that the number of explored clusters for
the propagation of the infection is much limited in small size
systems.

V. DISCUSSION

In this paper we proposed a strategy based on percola-
tion theory on regular (triangular, square, and hexagonal)
lattices to optimize the production of crops in a plantation.
The strategy consists in sowing two varieties of plants with
different susceptibilities to a specific pathogen arranged as a
percolating system in order to maximize the number of plants
that survive an infestation. We assumed that the lattice spacing
in the percolation system coincides with the maximum dis-
tance that the pathogen can travel before entering a state of
dormancy or before dying due to starvation.

We were able to establish a relationship between the perco-
lation threshold of systems with two different probabilities for
the occurrence of the propagation process and the parameters
of the plantation. Namely the pathogen susceptibilities χA and
χB of each type of plant, the mixture M , the fraction of sites
that can initiate infection I , and the percolation threshold of
the lattice in which the plants are sown. We also found that,
under particular conditions of pathogen susceptibility, there
are values of the mixture M for which the disease will only
propagate on finite clusters even if all the soil is sown.
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We experimentally measured the pathogen susceptibility
to different varieties of the Phytophtora pathogen of three
chili varieties: “Serrano,” “Arbol,” and “Poblano” which are of
commercial value in Mexico. We found that for the pathogens
catalogued as PcV51, PcV77, and PcV90, there are values
of the mixture M for which the infection will only spread
on finite clusters, independently of the regular lattice that is
considered. On the other hand, we found that the mortality
rate of the plants in presence of PcV01 is relatively high,
so it is not possible to find mixing values for which the
infection propagates on finite clusters. For this particular
case, we determined by computer simulation the production
yield of the three possible pairs of plants for three different
percentages of inoculated soil I = 0.01, 0.05, and 0.10. We
found the production yield is highly sensitive to the amount
of soil inoculated and there is a considerable difference in
production yield for the extreme values of I . In addition,
the production yield for the next-to-nearest-neighbor lattice
is lower than that for the nearest-neighbor lattice due to the
fact that in the 3N square lattice, the number of coordination
is larger than in the 2N square lattice, which means that the
pathogen has more options to spread.

In the most drastic case of pathogen susceptibility, the
“Arbol” variety was measured to have χA = 1, which means
the infection will spread over all the plants regardless of
the percentage of inoculated land when all the soil is sown.
However, when mixed with the “Serrano” variety (χS = 0.6)
on a nearest-neighbor square lattice, we found total production
level curves of 50%, 35%, and 30% of the total cells for
inoculated soil levels of I = 0.01, 0.05, and 0.10, respectively.
On the other hand, on a next-to-nearest-neighbor square lattice
we found production level curves around 30% regardless of
the fraction of the soil inoculated. These results show that
the production of “Arbol” could be improved if sown in
combination with a second variety of chili plant.

We compared the predictions of our model to the simulated
production yield for a crop with a mixing of two chilis sowed
in alternate rows of the lattice. That is sowing one of the
varieties in all sites of a row and filling the next row with
the other type of chili. We found the production yield for
each of the three combinations of chilis does not depend on
the coordination number of the lattice nor on the fraction
of soil initially inoculated. For these varieties with pathogen
susceptibilities close to 1 the production yield is given by
1 − (χA + χB )/2. For example, in the S-A mixing exposed to
PcV01, on the average, half of the initially inoculated plants
will be of the variety A and then the corresponding rows rows
will be completely lost since χA = 1. Consequently, the rows
with variety S will in fact be exposed to the pathogen and only
the resistant plants will survive. At the same time, the infected
plants of variety S will continue propagating the pathogen to
the next row and so on. At the end of the propagation process,
only resistant plants of the variety S will be alive, which
corresponds to 20% of all cells (since the mixing proportion
is 50% and χS = 0.6). And the pathogen will spread over
all the lattice. On the other hand, using our model, there is
a production yield curve corresponding to 50% (∼10% of
variety A+ ∼ 40% of variety S).

In Fig. 9 we show the yield production for the alternate
rows strategy and the maximum percentage observed for the

FIG. 9. Comparison of the production yield between the alternate
rows sowing (filled squares) and the percolation strategy for the P -S
(red), A-P (green), and S-A (blue) mixings, for plants exposed to
PcV01. Simulations of the percolation strategy in 2N (filled circles)
and 3N (triangles) lattices for different fractions of inoculated soil
(I = 0.01, 0.05, 0.1) are shown. Production yield of systems sowed
in alternate rows with different combinations of pathogen suscepti-
bilities (purple points) agree with 1 − (χA + χB )/2 (black curve) for
high susceptibilities values.

percolation strategy in 2N and 3N square lattices. Simulations
of alternate rows sowing for other combinations of pathogen
susceptibilities were performed (see the purple points in
Fig. 9). Note that for those systems where the pathogen
susceptibility is high for both plant varieties, the normalized
production yield is well fitted by 1 − (χA + χB )/2. Finally,
the percolation strategy presented here predicts a better pro-
duction yield than the alternate rows sowing strategy, even in
those systems where the pathogen can reach next to nearest
neighbors in the square lattice for the three analyzed fractions
of inoculated soil.

VI. CONCLUSIONS AND PERSPECTIVES

In this work, we have presented and implemented a model
based on percolation theory to avoid the spreading process
of a pathogen with the capability of movement (by flagella)
through plants with high susceptibility by the sowing of
a plant mixture with less pathogen susceptibility. We have
determined the percolation threshold and the no percolation
condition for these systems considering the following vari-
ables: density of cells sown, pathogen susceptibilities, the
portion of plant mix, and the percentage of inoculated soil.
This strategy can be applied in a whole variety of cases. Also,
for those systems where it is not possible to determine the
no percolation conditions, we presented the corresponding
Monte Carlo simulation. The main result of this approach is
the possibility to raise the production yield of the plant with
high pathogen susceptibility, even when the yield production
is close to zero under traditional sowing conditions.
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The strategy presented here could help farmers to select
the type of plants that would give the best production yield
on their land without applying any pesticides or chemical
products. The required parameters to predict the production
yield for a given mixture of plants are just the percentage of
soil initially inoculated and the pathogen susceptibilities of the
plants involved. One has to consider that applying this model
to a real-life situation, farmers should now be interested in the
physical and chemical properties of harmful microorganisms
that inhabit their land and in the response of the desired plants
to sow in the presence of those pathogens. These properties
would enable them to determine the sowing conditions that
would optimize the harvest.

Since the model allows for available cells, a third plant
variety can be added in the empty spaces. This would clearly
permit farmers to better exploit their agronomic resources
with the only restriction of choosing a more resistant variety of
plant. This proposal is in agreement with polyculture, which
is promoted as a way for sustainable use of soils.

The model could be straightforwardly extended to assess
the effect of additional variables of the pathogen dynamics on

the propagation of the disease, giving a more accurate pre-
diction of the production yield. For example, reinfection and
recovery of some plants were observed on our experiments.
The plant reinfection lapse and the recovery time could be
measured and implemented in our model using an SIR model
approach.

Finally, some other types of variables might also be in-
cluded, such as the care provided by the farmer or the pos-
sibility of having more than one type of pathogen in the field.
This occurs, for example, with P. capsici, whose subvarieties
can all be found in the same parcel.
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We propose a strategy based on the site-bond percolation to minimize the propagation of Phytophthora
zoospores on plantations, consisting in introducing physical barriers between neighboring plants. Two clustering
processes are distinguished: (i) one of cells with the presence of the pathogen, detected on soil analysis, and
(ii) that of diseased plants, revealed from a visual inspection of the plantation. The former is well described by
the standard site-bond percolation. In the latter, the percolation threshold is fitted by a Tsallis distribution when
no barriers are introduced. We provide, for both cases, the formulas for the minimal barrier density to prevent
the emergence of the spanning cluster. Though this work is focused on a specific pathogen, the model presented
here can also be applied to prevent the spreading of other pathogens that disseminate, by other means, from one
plant to the neighboring ones. Finally, the application of this strategy to three types of commercially important
Mexican chili plants is also shown.

DOI: 10.1103/PhysRevE.101.032301

I. INTRODUCTION

The genus Phytophthora (from Greek, meaning phyto,
“plant,” and phthora, “destroyer” [1–3]) is one of the most
aggressive phytopathogens that attack the roots of plants and
trees in every corner of the world. The diseases caused by
exposition to Phytophthora generate tremendous economical
losses in agronomy and forestry. For example, Phytophthora
capsici cause considerable damage in plantations of chili,
cucumber, zucchini, etc. [4–6]. The same occurs with tomato
and potato plantations, which are affected by Phytophthora in-
festants [7–9]. Phytophthora cinnamomi harms avocado plan-
tations [10–12] and, together with Phytophthora cambivora,
produce the ink disease, which is widely distributed in Europe
[13–15]. Phytophthora has caused significant devastation on
Galician chestnut and the Australian eucalypt, putting them
close to extinction [16–18].

From a biological perspective, Phytophthora shares mor-
phological characteristics with true fungi (Eumycota) such
as mycelial growth or the dispersion of spores of mitotic or
asexual origin. Its form of locomotion, by means of flagella
[19], is a distinctive feature that enables them to have a
great impact on the plant kingdom as phytopathogens. They
can disperse through soil moisture or water films, including
those on the surface of the plants. These motile zoospores,
emerging from mature sporangia in quantities of 20 to 40,
can swim chemotactically toward the plants [19–21]. When
they reach the surface of the roots they lose their flagella,

*jerc.fis@gmail.com

encyst in the host, and form a germination tube through which
they penetrate the surface of the plant [22,23]. Moreover,
many species of Phytophthora can persist as saprophytes if
the environmental conditions are not appropriate but become
parasitic in the presence of susceptible hosts [21]. Due to
the physiology of the oomycetes most fungicides have no
effect on them [1,24,25]. Therefore, research on nonchemical
strategies that minimize or eliminate the propagation of the
pathogen is necessary.

It has been noted that for some type of plants not all
individuals manifest the disease after the exposition to a
specific pathogen. We take advantage of this fact to define the
pathogen susceptibility (χ ) of a plant type as the fraction of
individuals that get the disease. It can be interpreted as the
probability that a sample of the plant gets sick after being
exposed to the pathogen and can be measured in a laboratory
or a greenhouse under controlled conditions or by direct
observation in the plantation.

On the other hand, one of the models widely used to de-
scribe physical processes is the site-bond percolation, which
has been applied to study the spread of diseases [26–29].
It is a generalization of the site and bond percolation that
consists in determining both site and bond occupation proba-
bilities needed to the emergence of a spanning cluster of sites
connected by bonds. In this context, two nearest-neighboring
sites do not belong to the same cluster if there is not a
bond connecting them. In this work, occupied sites in the
percolation system represent susceptible plants through which
the propagation process can occur, and bonds represent the
direction of propagation of the pathogen.
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It is worth mentioning that zoospores move directly to
neighboring plants. Placing physical barriers between them
(that is, perpendicularly to the direction of propagation) can
help to decrease the opportunity for root to root pathogen
transmission. For instance, the Australian government recom-
mends using physical root barriers such as impermeable mem-
branes made of high-density polyethylene [30–33], which
have been used in agriculture and horticulture. Trenches filled
with compost (a mixture of manure and crop residues) in addi-
tion with biological control agents (for example, Trichoderma
spp. or Bacillus spp.) could be used as a good barrier against
soil-borne pathogens like oomycetes and fungi [34–36]. With
the use of barriers it could be possible to fragment the span-
ning cluster of susceptible plants, preventing the propagation
of the pathogen. Thus, if the pathogen susceptibility of the
plant is known, then one can try to determine the minimal den-
sity of barriers (pw) that stops the propagation of the pathogen.
However, this density does not necessarily correspond to the
bond percolation threshold.

Although this paper is motivated by the important prob-
lem caused by the propagation of Phytophthora, which is
still unsolved nowadays, the strategy presented here can be
adapted to mitigate the spread of other diseases. There exist
other phytopathogens relevant to agronomy that disseminate
over neighboring plants (for example by walking [37], rain
splashing [38–40] or swimming [41]) like red spider mites,
leaf rust and Pythium (with similar propagation mechanisms
as Phytophthora), among others. In practice one only needs to
find a suitable physical barrier that efficiently avoids nearest-
neighbor propagation of the specific phytopathogen.

In Sec. II, we introduce the site-bond percolation model
for the pathogen-plant interaction and the role of the barriers.
Section III describes the simulation method used in this work
and provides the simulation rules for the clustering process. It
also shows an example of the simulation process and describes
the data analysis method. In Sec. IV, we report the critical
curves as a function of the initial percentage of inoculated soil
for the barrier-free case. These curves indicate the maximum
value of the pathogen susceptibility that guarantees a spanning
cluster of diseased plants is not formed even if the soil
is completely infested with the pathogen. Additionally, we
provide the empirical formulas to determine the density of
barriers that prevents the emergence of the spanning cluster
when the susceptibility exceeds the aforementioned critical
value. In Sec. V, we show the application of this method to
three varieties of Mexican chili plants with high commer-
cial value. Finally, Sec. VI presents the conclusions of this
work.

II. MODEL

The plantation is modeled as a simple two-dimensional
lattice (square, triangular, and honeycomb) wherein each site
represents a plant. The lattice spacing is chosen as the maxi-
mum displacement length that the pathogen can travel before
entering a state of dormancy or before dying due to starvation.
This condition ensures the pathogen can only move to the
nearest-neighbor cells as depicted in Fig. 1. We assume a
site with an active pathogen will propagate the disease to all
nearest-neighbor sites.

FIG. 1. Possible barrier locations (solid lines), directions of mi-
croorganism propagation (dotted lines), and modification of the
nearest-neighbor meaning induced by inoculated cells with a resis-
tant plant in square [(a) and (d)], triangular [(b) and (e)], and hon-
eycomb [(c) and (f)] lattices. Bottom figures show susceptible plants
(green triangle) with a neighboring resistant plant in an inoculated
cell (red triangle). As a consequence of the microorganism propa-
gation (red arrows), the nearest-neighbor definition (black arrows) is
modified since the site with the susceptible plant can now be linked
to farther sites (blue arrows).

Here the pathogen susceptibility plays an important role
since resistant plants can act as a natural barrier for susceptible
plants by locally containing the propagation process, i.e., a
resistant plant does not disseminate the disease. In our model
resistant plants are uniformly distributed on the system since it
is not possible to determine in advance which seeds will grow
into resistant or susceptible plants. In this way the pathogen
susceptibility plays the role of the occupation probability in
the traditional treatment of percolation theory.

Another essential variable that needs to be considered is
the initial fraction of inoculated cells at the beginning of the
propagation process which is denoted by I . In our model these
cells are distributed uniformly over the lattice. This parameter
is relevant to amalgamate adjacent-disjoint clusters promoting
a favorable environment for the formation of a spanning
cluster of diseased plants or of cells with the presence of the
pathogen [42]. Additionally, we put barriers that are randomly
distributed in the lattice. These are placed perpendicularly to
the direction of propagation of the pathogen (see Fig. 1), and
its primary function is to prevent the pathogen from reaching
neighbor sites. Note that all possible barriers that can be
placed form the dual lattice to that formed by all possible
directions of propagation of the pathogen. Then the question
we want to answer is as follows: What is the minimal barrier
density, in terms of χ and I , that guarantees a spanning cluster
will not appear?

We distinguish two different clustering processes: (i) the
formation of clusters of cells with the presence of the
pathogen and (ii) the formation of clusters of diseased plants.
Although both processes are consequence of the propagation
of the pathogen they depend in different ways on the intrinsic
properties of the plants. In practice one would observe the first
process if a pathogen soil test is performed while a visual
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inspection of the damage on the plantation would reveal the
second process. In the following we refer to them as soil and
plant cases, respectively, and the corresponding variables will
be labeled with a superscript.

In the soil case, for a lattice with N sites, the mean number
of available plants ⟨N⟩av to the propagation process is ⟨N⟩av =
Nχ . Since the susceptibility of the plant and the inoculation
state of the cell are independent variables, it is necessary to
take into account the mean number of inoculated cells ⟨N⟩in
with a resistant plant. This condition adds ⟨N⟩in = N (1 − χ )I
extra available cells. Thus, the total mean number of cells
where the propagation process can occur is ⟨N⟩tot = ⟨N⟩av +
⟨N⟩in. Therefore, the propagation takes place in a percolat-
ing system with an effective occupation probability psoil

eff =
I + (1 − I )χ . In this case, the spanning cluster emerges if
psoil

eff ! pcs, where pcs is the critical probability in the purely
site percolation. Thus the desired percolation threshold is
psoil

eff = pcs.
The introduction of barriers in the soil case makes the sys-

tem suitable to be modeled with the site-bond percolation. The
critical curves as a function of the occupation probabilities
of sites (ps) and bonds (pb) has been empirically fitted using
[43] pb = B/(ps + A), where A = (pcb − pcs)/(1 − pcb), B =
pcb(1 − pcs)/(1 − pcb), and pcb is the critical probability in
the purely bond percolation. Moreover, since barriers are
located in the dual lattice, the density of barriers and the bond
occupation probability are related by pb + psoil

w = 1, that is,
the joint set of barriers and bonds it is exactly Nb (see Sec.
III). So we finally find that the critical curves for the soil case
can be written as

psoil
w = 1 − pcb(1 − pcs)

(1 − pcb)(I + (1 − I )χ ) + pcb − pcs
. (1)

On the other hand, for the plant case, inoculated cells with
a resistant plant do not belong to the cluster of diseased plants.
However, these cells play an essential role since adjacent-
disjoint clusters can be amalgamated through them. This
fact modifies the nearest-neighbor meaning since it is then
possible to link two susceptible plants separated by a distance
greater than the lattice spacing (see Fig. 1), then the pos-
sibility to amalgamate adjacent-disjoint clusters is increased
[42].

The main difference between the soil and plant cases is just
this amalgamating role played by inoculated cells with a resis-
tant plant at the beginning of the propagation process. In the
soil case, these cells are considered as occupied sites, while in
the plant case, they do not belong to any cluster; however, they
can transmit the disease over neighboring susceptible plants.
Schematically, this latter situation looks like a healthy plant
with sick neighbors.

III. SIMULATION METHOD

We implemented a modified version of the Newman-Ziff
algorithm reported in Refs. [44,45] to determine the percola-
tion threshold.

Since the susceptibility condition of each plant and the
cells’ inoculation state are independent of each other they are
stored in separate matrices in the simulation. These matrices,
that we call X and I, respectively, are initially null. They

are then filled according to the predefined values of
χ and I . For the case with no barriers, however, only the
knowledge of the inoculated cells is required to determine the
percolation thresholds.

For simplicity we describe the implementation of the algo-
rithm for a square lattice. However, this algorithm can also be
used for other lattices simply changing the implementation of
the nearest-neighbor definition.

Each cell of the L × L matrices X and I is labeled with a
progressive number M = iL + j, for the cell at row i and col-
umn j. The set of cells’ labels is then N = {0, 1, 2, . . . , L2 −
1}. On the other side, the possible propagation directions
for all cells form a network with 2L(L − 1) bonds since the
system is considered as free of periodic boundary conditions.
As we did with the cells, each bond is labeled with progressive
numbers that form the set Nb = {0, 1, 2, . . . , 2L(L − 1) − 1}.

An initial number of inoculated cells nI is drawn from the
binomial distribution B(L2, I ) and then nI labels are randomly
taken from the set N . The corresponding cells are the sites
from which the infection process will propagate. These cells
are marked by changing their state from 0 to 1. The initial
distribution of susceptible plants, that is, plants that will get
the disease if they are exposed to the pathogen, is obtained in
a similar way. Note that only the initial conditions are set so
far and the propagation process has not been started so that no
cells are linked yet.

To add bonds between cells the Nb labels are randomly
permuted and then the corresponding bonds are added one
at a time until a spanning cluster is formed. It should be
recalled that bonds determine the direction of propagation in
this model.

To decide which bonds will connect the sites we impose
rules based on the way the pathogen transports itself from
site to site. Since the zoospores are capable of detecting the
presence of neighboring plants, they will swim toward them as
soon as they emerge from the sporangia. If a zoospore reaches
a resistant plant, then it will either enter a latency state or die
from inanition so that it will not be able to further propagate
the disease. If, on the other hand, the zoospore arrives at a
susceptible plant, then it will attack the plant and produce new
sporangia. They, in turn, will produce new zoospores that will
eventually swim toward neighboring plants. Thus the rules can
be stated as follows.

A bond will connect two nearest-neighbor sites if:
(1) Soil case:

(a) Any of the sites was inoculated during the initial
configuration.

(b) Both sites have susceptible plants.
(2) Plant case:

(a) Any of the sites was inoculated during the initial
configuration and the other has a susceptible plant.

(b) Both sites have susceptible plants.
This way bonds are added one by one, and sites are

connected according to the rules above, until a cluster that
connects one side of the lattice to the opposite one, the
so-called spanning cluster, appears. The union-find algorithm
is used to connect sites. Since not every site pair can interact
not every bond can connect adjacent sites. In order to identify
the spanning cluster, before starting the simulation process,
susceptible plants in the last and first rows are united with
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(a) (b)

FIG. 2. Examples of possible initial configurations of a system
of size L = 10. (a) Distribution of cells with susceptible (filled
triangles) and resistant (empty triangles) plants. (b) Distribution of
inoculated cells.

auxiliary labels -1 and -2, respectively. Then, the simulation
process is stopped when the labels {-1,-2} change to the same
value.

The essential difference between the two cases is the role
played by the inoculated cells with a resistant plant. In the soil
case they become occupied sites while in the plant case they
may merge disjoint clusters.

To visualize the difference between both cases consider an
L = 10 system with χ = 0.5 and I = 0.4. Figure 2 shows
one possible initial configuration of susceptible plants and
inoculated cells before the propagation process starts.

In a system of size L = 10 there are 180 bonds. A possible
random permutation of their labels is listed below:

{118, 63, 26, 119, 160, 22, 64, 142, 156, 126, 8, 152, 73,
127, 32, 78, 81, 170, 36, 92, 89, 123, 57, 68, 12, 33, 24, 129,
158, 46, 169, 82, 48, 147, 69, 38, 18, 56, 168, 178, 179, 164,
114, 6, 79, 42, 86, 41, 13, 52, 165, 115, 43, 85, 172, 116, 133,
11, 27, 139, 29, 15, 0, 138, 122, 40, 7, 148, 74, 71, 113, 177,
111, 135, 37, 51, 67, 9, 121, 98, 99, 35, 49, 108, 151, 53, 173,
39, 1, 5, 2, 153, 45, 146, 76, 59, 145, 143, 163, 96, 16, 104,
101, 61, 144, 28, 102, 17, 88, 31, 3, 141, 109, 77, 65, 80, 166,
106, 167, 117, 70, 130, 21, 83, 140, 20, 157, 10, 136, 161,
137, 107, 100, 150, 110, 91, 132, 128, 112, 93, 44, 149, 19,
94, 131, 154, 155, 30, 62, 171, 23, 34, 55, 4, 54, 176, 58, 75,
174, 50, 60, 125, 47, 25, 103, 134, 120, 159, 90, 84, 14, 87,
175, 124, 95, 105, 66, 72, 97, 162}.

The bonds are added in this order until a spanning cluster
appears. The entries of one of the cells a given bond can con-
nect are given by i = ⌊h/(2L − 1)⌋ and j = h mod (2L −
1), where h is the bond’s label and ⌊x⌋ denotes the integer
part of x. Note that the orientation of the bond is identified
as horizontal if j < L − 2 or vertical otherwise. In addition,
the value of j should be corrected for vertical bonds by
subtracting L − 1. Then the cells with entries i, j and i, j + 1
are taken if the bond is horizontal; while the cells at i, j
and i + 1, j are taken if the bond is vertical. Finally, if the
pair taken fulfills the rules given previously, then they are
connected using the union-find algorithm.

Figure 3 shows the networks formed by connected bonds
in both cases. While in the soil case 121 bonds were added
before the spanning cluster appeared, in the plant case were

(a) (b)

FIG. 3. Spanning clusters formed in the (a) soil and (b) plant
cases for the initial conditions of Fig. 2 and the list of bonds given in
the text. Only the bonds that connect sites are shown (black lines). In
the case (b), bonds connecting a resistant plant in an inoculated site
to a susceptible plant are represented with dashed lines. Yellow lines
show the modification of the nearest-neighbor definition.

needed 160 bonds. Note that, although each network has its
own topology, in the plant case the fundamental role for the
formation of a spanning cluster is played by the modification
of the nearest-neighbor definition [yellow lines in Fig. 3(b)]
introduced by the interactions between susceptible plants and
inoculated cells with a resistant plant on it [dashed lines in
Fig. 3(b)]. This clearly shows the consequence of this type of
interactions, namely their capacity to merge disjoint clusters
of susceptible plants.

Data analysis

Using this method, we determined the probability Pn that a
spanning cluster appears after adding n bonds (or sites) [46]
as an average over 104 runs for each pair (χ , I ). Starting in
χ = 1 and I = 1 we decreased their values independently in
steps of "χ = "I = 0.05. Then the percolation probability is
computed as P(p) =

∑
n B(N, n, p)Pn, where B(N, n, p) is the

binomial distribution [44,45], N is the total number of sites or
bonds in the lattice, and p is the occupation probability of sites
or bonds correspondingly. Last, the percolation threshold is
determined by solving the equation P(pc) = 0.5 [47]. To this
end, the percolation probability is computed from ⟨nc⟩/L2 −
0.15 to ⟨nc⟩/L2 + 0.15 in steps of "p = 0.01. Then P(p) =
0.5[1 + tanh((p − pc)/"L )] is fitted to the estimated data.
Here pc is the estimation of the percolation threshold and "L
is the width of the sigmoid transition [47].

To take finite-size effects into account we also performed
simulations using the system size L = 32, 64, 128, and 256.
Thus the percolation threshold in the thermodynamic limit is
estimated by the extrapolation of the scaling relation pc −
pc(L) ∝ L−1/ν , where ν is the exponent corresponding to the
correlation length [48]. It is well known that the transition
width "L scales as a function of the system size L as "L ∝
L−1/ν [49]. From the fit of the percolation probability data,
we found that ν = 4/3, which is in good agreement with the
results reported in the literature for the percolation theory in
2D. Finally, the critical density of barriers is calculated as
pw = 1 − p∗

cb, where p∗
cb is the bond percolation threshold as

a function of χ and I .
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FIG. 4. (a) Critical curves for cluster formation over infested
soil (hollow figures) and infected plants (solid figures) on triangular
(triangles), square (squares), and honeycomb (circles) lattices with
no barriers. Theoretical curves for the soil case (dashed lines) and
the fit to the data for the plant case (continuous lines) are also shown.
(b) Simulation (figures) and theoretical (lines) critical curves in the
soil case for square (squares), triangular (triangles), and honeycomb
(circles) lattices for several values of I: 0.0 (black), 0.1 (purple), 0.2
(green), 0.3 (cyan), 0.4 (blue), and 0.5 (red).

IV. RESULTS

Simulation results for the critical curves of both soil and
plant cases with no barriers are shown in Fig. 4(a). Notably,
our results for χ soil

c are very well described by the parametriza-
tion psoil

eff = I + (1 − I )χ = pcs. Notice that the critical curves
for χ

plant
c deviate from those for χ soil

c for I > 0.15. This is due
to nonsusceptible plants lying in inoculated cells which do
not belong to the clusters and can serve as a bridge between
their adjacent sites. We found that χ

plant
c can be well fitted by

the Tsallis distribution pcs/(1 + aI/n)n, with a = 0.91 ± 0.03
and 1.40 ± 0.06 and n = 2.0 ± 0.4 and 1.1 ± 0.1 for the
square and triangular lattices, respectively. For the honeycomb
lattice n takes a large value so we used pcs exp(−aI ) with
a = 0.63 ± 0.01. This behavior can be understood as the
collective contribution of the interaction between susceptible
plants and infected cells with a resistant plant. Note that
the probability of observing this pair become higher as χ
decreases and I increases, and thus, the percolating system
looks like a lattice formed by regular sites and sites involving
complex nearest neighbors. The main result of this analysis is
the existence of a minimal susceptibility that guarantees the
nonemergence of a spanning cluster of diseased plants even if
all cells are inoculated, that is, the value of χ

plant
c for I = 1.

However, if χ > χ soil
c or χ > χ

plant
c , then it is necessary to

use the barrier strategy to reduce the connectedness of the
lattice. In Fig. 4(b), we show the simulation results for the soil
case. Notice that they are well described by Eq. (1), which
corresponds to the description of the typical critical curves in
the site-bond percolation with an occupation probability psoil

eff .
This is because in this case the infected cells are taken into
account in the cluster formation process even if the plant does
not become sick.

On the other hand we found, for the plants case, that the
relation among χ , χ

plant
c , and pplant

w is given by the power
law (χ − χ

plant
c ) = α(pplant

w χ/χ
plant
c )β when I is fixed, as it is

-2

-1

0

1

-2 -1 0 1

(a)

(ln
(  χ

-  χ
cpl

an
t )-

ln
( α

))
/ β

ln(pw
plant χ/ χc

plant)
-2 -1 0 1

(b)

ln(pw
plantχ/χc

plant)
-2 -1 0 1

(c)

ln(pw
plant χ/ χc

plant)

FIG. 5. Power-law relation among χ , χ plant
c , and pplant

w in the plant
case when I is fixed for (a) square, (b) triangular, and (c) honeycomb
lattices. Black solid line is the identity function. The color scale
indicates the value of I from I = 0 (green) up to I = 1 (blue) in steps
of "I = 0.05.

shown in Fig. 5. It should be noted that both α and β depend
on I . Particularly, β takes values between 0.95 and 1.18 for
all lattices. Then, the critical curves for the plants case are
given by

pplant
w = χ

plant
c

χ

(
χ − χ

plant
c

α

)1/β

, (2)

which matches very well the simulation data for the square,
triangular, and honeycomb lattices as shown in Fig. 6 for
different values of I . Table I shows the values of the pa-
rameters α and β (for different values of I) given by the fit
to simulation data for the square, triangular, and honeycomb
lattices. Moreover, in the case χ = 1, pplant

w = 1 − pcb as
expected since, under this condition, the system corresponds
to the traditional bond percolation model.

V. APPLICATION TO CHILI PLANTATIONS

Application of Eq. (2) requires the knowledge of the plant’s
pathogen susceptibility. This quantity has been measured ex-
perimentally as described in Ref. [42]. In general terms their
method consists in sowing plants in previously sterilized soil
and innoculating a fraction of the substrate with oomycetes.
The pathogen is then allowed to propagate through the plan-
tation and the presence of the pathogen is assessed for each
plant. The ratio of the number of live infected plants to the
total number of infected plants gives the surviving rate P .
The pathogen susceptibility of the plant is then calculated as
χ = 1 − P .

The reported values of the pathogen susceptibility for the
varieties arbol, poblano, and serrano plants of chilis (which
are of high commercial value in Mexico) are 1.00, 0.89,
and 0.60, respectively. Putting these values into Eq. (2) we
obtained the curves for pplant

w as a function of I shown in Fig. 7
for a square lattice. Note that as the value of χ approaches
1, like for the arbol and poblano chilis, the barrier density
approaches the bond percolation threshold (pcb = 0.5) since
in these particular cases the percolating system is very similar
to the bond percolation model. On the other side, as χ
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FIG. 6. Comparison between simulation results (figures) for pplant
w as a function of the susceptibility and the curve proposed in Eq. (2) (solid

lines) for (a) square, (b) triangular, and (c) honeycomb lattices. The color scale indicates the value of I from I = 0 (green) up to I = 1 (blue)
in steps of "I = 0.05.

approaches the site percolation threshold, like for the serrano
chili, the range of possible values for pplant

w becomes larger;
however, pplant

w (I = 1) ≈ 0.41 is less than 0.5. In practice, this
means an 18% less barriers are needed to prevent the disease
propagation.

Also as χ becomes less and less than pcs, the value of pplant
w

decreases until it vanishes. This point, when pplant
w (I = 1) = 0,

corresponds to the intersection of the critical χ
plant
c curve with

the vertical line I = 1 (see Fig. 4). This is just the greatest
value of a plant’s susceptibility that makes the barrier strategy
unnecessary.

TABLE I. Fit parameters for the square (!), triangular (△), and
honeycomb (⃝) lattices. Error estimates in the last significant figure
are indicated in parentheses.

I α! β! α△ β△ α⃝ β⃝

0.00 0.4870(9) 1.065(3) 0.3685(5) 1.132(5) 0.621(5) 1.031(8)
0.05 0.4922(8) 1.050(3) 0.3689(5) 1.099(5) 0.637(2) 1.032(3)
0.10 0.4956(6) 1.029(2) 0.3673(4) 1.077(3) 0.636(2) 1.001(3)
0.15 0.4982(5) 1.013(2) 0.3646(4) 1.051(3) 0.657(3) 1.003(5)
0.20 0.5000(4) 1.005(2) 0.3598(4) 1.032(3) 0.669(3) 0.996(5)
0.25 0.4994(2) 0.994(1) 0.3530(2) 1.029(1) 0.674(2) 0.974(4)
0.30 0.4977(3) 0.990(1) 0.3445(1) 1.024(1) 0.685(2) 0.974(3)
0.35 0.4941(4) 0.989(2) 0.334(1) 1.023(6) 0.698(3) 0.980(5)
0.40 0.4892(3) 0.991(2) 0.3253(2) 1.022(1) 0.696(2) 0.954(3)
0.45 0.4821(3) 0.996(2) 0.3145(2) 1.025(1) 0.711(2) 0.979(4)
0.50 0.4741(2) 1.003(1) 0.3036(3) 1.033(2) 0.713(1) 0.982(2)
0.55 0.4653(2) 1.013(1) 0.2925(4) 1.047(2) 0.715(2) 0.987(4)
0.60 0.4551(2) 1.025(1) 0.2825(3) 1.052(2) 0.720(1) 1.005(3)
0.65 0.4450(1) 1.036(1) 0.2721(3) 1.066(2) 0.717(2) 1.016(4)
0.70 0.4342(3) 1.050(2) 0.2622(4) 1.080(2) 0.708(3) 1.014(8)
0.75 0.4235(5) 1.070(3) 0.2531(4) 1.094(2) 0.705(3) 1.037(7)
0.80 0.4120(6) 1.082(4) 0.2442(4) 1.107(2) 0.699(4) 1.057(9)
0.85 0.4017(8) 1.104(5) 0.2361(5) 1.122(3) 0.687(5) 1.06(1)
0.90 0.391(1) 1.123(7) 0.2285(5) 1.137(2) 0.676(5) 1.08(2)
0.95 0.380(1) 1.142(8) 0.2216(6) 1.152(3) 0.669(5) 1.11(2)
1.00 0.371(1) 1.163(9) 0.2148(7) 1.165(4) 0.654(6) 1.12(2)

VI. CONCLUSIONS

In summary, we have presented a strategy based on the
site-bond percolation model to prevent the propagation of
Phytophthora over a plantation. This strategy consists of plac-
ing barriers between adjacent cells, whose density depends on
χ and I . Two different clustering processes were analyzed:
(i) clusters of cells with the presence of the pathogen and (ii)
clusters of diseased plants. The former is related to a soil test
and the latter to a direct visual inspection of the damage on the
plantation. It was found that both processes are indistinguish-
able, and therefore described by the same critical curve, for
I < 0.15. On the contrary, for I > 0.15 this behavior does not
hold and different approaches for each process are necessary.
Differences in the critical density of barriers between the
soil and plant cases are a consequence of the hybridization
process of the lattice, which leads to a major deviation when
I increases and χ decreases (see Fig. 6). The soil case is
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FIG. 7. (a) Critical values pplant
w for arbol (A), poblano (P), and

serrano (S) chili plants sowed with a square lattice arrangement.
Vertical lines indicate their susceptibilities: 1.00 (A), 0.89 (P), and
0.60 (S). The solid curves are the same as in Fig. 6. χ plant

c (I = 1) =
0.28883 ± 0.00007 is the maximum value of a plant’s susceptibility
that inhibits the formation of a cluster of diseased plants, even in the
extreme case where the patogen is present all over the plantation.
(b) Values of pplant

w given by Eq. (2) and data from Table I for the
arbol (purple), poblano (black), and serrano (red) chili plants on a
square lattice.
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described by the site-bond percolation model with an ef-
fective occupation probability given by psoil

eff = I + (1 − I )χ .
Then the critical curves are as usual [see Eq. (1)] because the
clustering process of the infected cells does not distinguish the
sickness states of the plant.

In the plant case, the critical curves predict the existence of
a minimal susceptibility χ

plant
c that guarantees a spanning clus-

ter of infected plants will not appear, that is, if χ < χ
plant
c even

when pw = 0 and I = 1. Values for the minimal susceptibility
in square, triangular, and honeycomb lattices were found to
be 0.28883 ± 0.00007, 0.2141 ± 0.0003, and 0.364 ± 0.003,
respectively. Particularly, for the square lattice, this value is in
agreement with the critical probability of lattices with more
complex neighborhoods [50,51].

Based on the obtained results, we would advise farmers and
agronomists either to sow types of plants having a pathogen
susceptibility lower than χ

plant
c or to apply the barriers strategy

with a barrier density given by Eq. (2). A very important
advantage of this strategy is that it does not require to remove
plants therefore avoiding deforestation.

This strategy could be verified under controlled conditions,
for example, in greenhouses, tree nurseries, and hydroponics,

where Phytophthora and other phytopathogens cause great
devastation. On the other hand, its application on a real-life
situation requires us to take into account other ecological and
environmental variables, such as plant-plant or (beneficial)
microorganism-plant interactions, irrigation system, spatial
distribution of plants, the care provided by the farmer or the
possibility of having more than one type of pathogen in the
same parcel of soil.

Finally, Eq. (2) for I = 0 could be used as an alternative
parametrization of the critical curves in the site-bond perco-
lation model even for lattices defined in dimensions higher
than two.
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ABSTRACT

Phytophthora is one of the most aggressive and worldwide extended phytopathogens that attack plants and trees. Its effects produce tremen-
dous economical losses in agronomy and forestry since no effective fungicide exists. We propose to combine percolation theory with an
intercropping sowing configuration as a non-chemical strategy to minimize the dissemination of the pathogen. In this work, we model a
plantation as a square lattice where two types of plants are arranged in alternating columns or diagonals, and Phytophthora zoospores are
allowed to propagate to the nearest and next-to-nearest neighboring plants. We determine the percolation threshold for each intercropping
configuration as a function of the plant’s susceptibilities and the number of inoculated cells at the beginning of the propagation process. The
results are presented as phase diagrams where crop densities that prevent the formation of a spanning cluster of susceptible or diseased plants
are indicated. The main result is the existence of susceptibility value combinations for which no spanning cluster is formed even if every cell
in the plantation is sowed. This finding can be useful in choosing a configuration and density of plants that minimize damages caused by
Phytophthora. We illustrate the application of the phase diagrams with the susceptibilities of three plants with a high commercial value.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0044714

The propagation of Phytophthora zoospores on plantations is
modeled as a transport phenomenon on a percolation system
wherein the occupied sites represent susceptible plants. In par-
ticular, we explore the effects of the disease spreading over
intercropping plantation configurations (by sowing two differ-
ent types of plants in alternate columns or diagonals). This
ecofriendly strategy can be useful in choosing a configuration
and density of plants that minimize damages caused by Phy-
tophthora in situations where the control or the management
of the plantation is not suitable for homogeneously distributed
plants.

I. INTRODUCTION

Percolation theory is one of the most widely applied models
in statistical physics,1,2 ranging from the study of the formation of
galactic structures3 to the characteristics of the quark matter under
extreme conditions.4,5 This theory was first proposed as a framework
to explain transport phenomena that occur on porous media.6 In this
theory, the porous media can be modeled as a square lattice, wherein
each cell is independently assigned as occupied or empty with prob-
ability p and 1 − p, respectively. Occupied sites are able to allow the
flux of the transport phenomena. At a low occupation probability,
there are only a few occupied sites. On the other hand, for high
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occupation probability, almost all of the occupied sites are grouped
in a big cluster that connects two opposite sides of the lattice, the
so-called spanning cluster.2,7 In percolation theory, the fundamental
question to answer is the following: What is the minimum occupa-
tion probability at which the spanning cluster emerges? This critical
probability is the well-known percolation threshold.

The propagation of diseases can be modeled as a percolat-
ing process that occurs over a network connecting susceptible
individuals.8–11 With the help of percolation theory, a better under-
standing of this problem has been reached, establishing the condi-
tions to prevent the outbreak of some pathogens and diseases.12–14

Applications of percolation theory in agronomy and forestry are
straightforward since traditional plantations can be modeled as
simple regular lattices.15–22

In agronomy and forestry, the genus Phytophthora (from Greek
phyto, meaning “plant,” and phthora, “destroyer”23,24) is consid-
ered one of the phytopathogens with the highest negative ecological
impact due to the vast number of hosts that it attacks. Phytophthora
species have presence all over the world. For instance, P. cinnamomi
is found in the USA, Australia, and Western Europe, P. cambivora
in south-east Europe, P. katsurae in Japan and South Korea, and P.
capsici in Mexico.25 The harm Phytophthora causes not only produce
significant economic losses, but it has also caused ecological devasta-
tion in 15 biodiversity hotspots throughout the world, including the
Mediterranean basin, south of Western Australia, and the fynbos of
South Africa.26 One of the main features that make Phytophthora
a successful phytopathogen is its capability to move chemotacti-
cally toward the plants by using its flagella to swim in thin water
films or soil moisture.23,27,28 Due to its physiology, this pathogen
cannot be controlled with pesticides or fungicides.23,29,30 An alter-
native approach to prevent its propagation could be based on the
modification of the sown configurations.

Some authors propose a well-mixed distribution of plants as
a strategy to avoid the disease propagation.21,31 In particular, in
Ref. 21, the authors propose that a well-mixed plantation with two
plant types could be an efficient strategy to prevent the dissemina-
tion of Phytophthora zoospores for plants with high susceptibility.
They discuss the percolation threshold of this strategy as a func-
tion of the proportion of sown cells, their susceptibilities, and the
percentage of inoculated cells (for values less than 10%). However,
the control and management of plantation may not be suitable
for all cases since different varieties of plants could need specific
nutrients and cares. On the other hand, researchers in agronomy
sciences have studied the viability and production yield of planta-
tions with intercropping configurations.32–34 One of the advantages
of this sowing technique is that some plants can develop a certain
degree of beneficial interaction between them. Another benefit of
intercropping configurations is that they could reduce the number
of affected plants by aphid-borne viruses35 or insects transmitted
by the movement of herbivores.36 Intercropping plantations are a
worldwide extended practice that helps to increase the total produc-
tion and the efficiency of the land.37 For instance, China has one of
the biggest areas in the world dedicated to intercropping cultivates.38

In Western Europe, wheat-based intercropping systems are explored
as an agroecological strategy to improve the quality of the grains.39

In North America, cereal yield has been increased during the last
decade using this technique.40 Remarkably, “milpa” systems (see

FIG. 1. Example of a traditional Mexican milpa system where maize (m), bean
(b), and squash (s) are sown in an intercropping configuration. The importance of
this type of plantation lays in the beneficial interaction between species.

Fig. 1) in Mexico represent an ancient agrobiodiverse practice of
intercropping plantation.41 In these polycropping systems, maize,
squash, beans, or another legume are seeded in an intercropped
configuration.

In this work, we simulate the propagation process of Phytoph-
thora over two different planting configurations. In one of them,
two types of plants are placed in alternate columns, while in the
other, they are placed in alternate diagonals, as depicted in Figs. 2(a)
and 2(b), respectively. The spreading process of Phytophthora is
modeled as a transport phenomenon over a percolating system
where the occupied sites represent the plants that may get sick after
the interaction with the pathogen. Experimentally, it is observed that
not all the plants are affected after the exposure. To account for this,
we define the plant’s pathogen susceptibility (χ) as the probability
that a plant becomes ill after being exposed to the pathogen. The
individuals that exhibit resistance produced an effective immune
response (cell wall strengthening, the encoding of enzymes, and
synthesis of metabolites against oomycetes and fungal pathogens,
among others42). These resistant plants can act as natural barriers
that avoid local propagation of the pathogen.21,22

In the rest of this paper, we present the description of the model
and the implementation of the simulation method. The percolation
threshold is studied for the aforementioned intercropping configu-
rations, and we determine the conditions that prevent the formation
of a spanning cluster of susceptible or diseased plants as a function of
susceptibilities, occupation density, and the percentage of inoculated
cells at the beginning of the propagation process.

II. SIMULATION METHOD AND DATA ANALYSIS

The plantation is modeled as a square lattice of size L × L in
whose cells only one plant can be sown, either type A or B, with sus-
ceptibility χA or χB, according to an intercropping configuration.
The lattice spacing, i.e., the separation between adjacent plants, is
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FIG. 2. Intercropping configurations in alternate columns (a) and alternate diagonals (b), with the corresponding local propagation of the pathogen in nearest [(c) and (d)]
and next-to-nearest neighbor [(e) and (f)] square lattices. Cells filled in yellow represent a site with a type A plant, and its neighbor cells are marked in green. Subfigures
(g) and (h) show the modification to the adjacent neighbor definition induced by inoculated cells (red triangle) that are either empty cells or occupied by a resistant plant but
adjacent to a susceptible plant (green triangle) in nearest and next-to-nearest neighbor square lattices, respectively. As a consequence of the micro-organism mobility (red
arrows), the nearest-neighbor definition (black arrows) is modified since the site with the susceptible plant can now be linked to farther sites (blue arrows).

chosen as the maximum distance that the pathogen can move before
starving or entering in a state of dormancy. This guarantees that
the micro-organism can only be spread over the adjacent neighbors.
Specifically, we analyze the plantation configurations described in
Figs. 2(a) and 2(b) considering nearest and next-to-nearest neigh-
bor square lattices. This allows us to compare the collective behavior
of the local propagation for the two models. For example, suppose
that the type B plant has a higher resistance than the type A plant; i.e.,
χB < χA. In the nearest-neighbor case, we observe that, in the model
with alternate diagonals, a type A plant is completely surrounded
by type B plants [see Fig. 2(d)], which can induce a decrease in the
rate of the pathogen transmission. In contrast, the model of alter-
nate columns promotes cluster formation through the vertical lines
[see Fig. 2(c)]. Besides, for the next-to-nearest neighbor, the alter-
nate column model still promotes the propagation over the columns
with plants of higher susceptibility [see Fig. 2(e)], while in the model
of alternate diagonals, the pathogen will have a higher probability to
propagate over the diagonals [see Fig. 2(f)].

Another important variable in our model is the percentage of
cells with the pathogen presence at the beginning of the propagation
process, which we will denote by I. This parameter can be inter-
preted as the probability of observing the pathogen in a cell after
a soil test. The propagation process is started at these inoculated
cells. We also consider that some cells can be empty with proba-
bility 1 − p. Taking into account all of the above, note that cells in
the lattice will have different conditions of occupation and inoc-
ulation, which will permit or block the local propagation. Notice
that empty cells, or cells with a resistant plant, do not take part in
the clustering process, but if they are inoculated at the beginning

of the propagation process and they are adjacent to a susceptible
plant, they can act like a bridge connecting sites further away than
the lattice’s spacing. This can be interpreted as a modification of the
adjacent neighbor definition. Figures 2(g) and 2(h) show the modi-
fied pathogen ranges due to the interaction previously described. All
these effects must be taken into account in the simulation.

In our computational implementation, each cell in the plan-
tation is assigned two (independent) states: inoculation and occu-
pancy (by a susceptible plant). These are represented with corre-
sponding Boolean variables. The inoculated cells at the beginning of
the propagation process are considered uniformly distributed and
independent of its neighbors. Once the value of I has been fixed, a
fraction I of cells are randomly chosen to be assigned as inoculated.
To do this, the number of inoculated cells (nI) is randomly generated
from the binomial distribution B(L2, I). Then, we take nI elements
from the lattice at random and its corresponding inoculation state
variable is updated to 1, indicating the presence of the pathogen.

Since the intercropping configuration distinguishes sites that
are sowed with type A and B plants, it is possible to form subsets of
cells, NA and NB, for each species such that N = NA ∪ NB is the
set of all cells. The occupancy state is allocated by first placing the
type A plants using the Hoshen–Kopelman algorithm43 with occu-
pation probability pχA. Then, we place the type B plants by using the
Newman–Ziff algorithm44,45 (over the NB cells), taking into account
the occurrence of empty cells has probability 1 − p. At this point,
we stop the simulation and store the critical number nBc of type B
plants that were added before the spanning cluster emerged. For
the clustering process, we use the Union-Find algorithm described
by Newman and Ziff in Refs. 44 and 45. The rules to connect two
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adjacent cells are the following: (i) Both have susceptible plants or
(ii) one of the cells is inoculated and the other has a susceptible plant.

Using this algorithm, we compute the relative frequency
f∗n = fn/MT, where fn is the number of times the simulation stopped
when exactly n type B plants have been added and MT is the total
number of simulation runs. Thus, the probability Pn that a span-
ning cluster appears in the system after adding n type B plants is
determined as

Pn =

n
∑

k=0

f∗k . (1)

We estimate the percolation probability after adding the type B
plants as

P(χB) =
∑

n

B(L2/2, n, χB)Pn, (2)

where

B(L2/2, n, χB) =

(

L2/2

n

)

χn
B (1 − χB)

L2/2−n (3)

is the binomial probability mass function. For simplicity, we choose
even numbers for L. This means that we have the same number
of sites assigned to each type of plants. In Eq. (3), the argument n
in B indicates that there are exactly n sites occupied with a plant
in the system (out of L2/2 cells dedicated to the type B plants)
when its susceptibility is χB. Thus, the critical value χB required

FIG. 4. (a) Percolation thresholds for the case of monoculture plantation as a
function of I. The red points, from top to bottom, correspond to p = 0.7, 0.8, 0.9,
and 1 for nearest-neighbor square lattices. In the same order, black points for
next-to-nearest neighbor square lattices. (b) The collapse of the points pχc for
different occupation probabilities p. Lines are fits to the data [see Eq. (5)] with
p = 1.

for the emergence of the spanning cluster is determined by solving
the equation P(χB) = 0.5. To this end, we estimate the percolation
probability running 104 simulations for several χB-values around the
value of n at which fn takes its maximum value. Then, each data-set

FIG. 3. Determination of the percolation threshold for a near-
est-neighbor square lattice with χA = χB and I = 0. (a) Per-
colation probability (figures) as a function of χ for different
values of the system size: L = 32, 64, 128, and 256. Fit-
ting curves [see Eq. (4)] are represented as dashed lines. (b)
"L as a function of L in a ln–ln scale. The dashed line is
the fit ln"L ∼ −ν ln L, where the slope is 3/4. (c) Scaling
behavior of χc(L) as a function of L

−1/ν (figures) and the func-
tion χc(L) = mL−1/ν + χc (solid line). In the limit L → ∞,
the intercept corresponds to the percolation threshold in the
thermodynamic limit.
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FIG. 5. Phase diagrams for I = 0: (a) alternate columns for the nearest neighbor, (b) alternate diagonals for the nearest neighbor, (c) alternate columns for the next-to-nearest
neighbor, and (d) alternate diagonals for the next-to-nearest neighbor. The white zone represents the combination of susceptibility values that allow sowing all the cells. Shaded
regions indicate the maximum density at which the plantation should be sown to avoid the formation of a spanning cluster. The points represent combinations of different
chili susceptibilities: serrano-arbol (circles), serrano-poblano (triangles), and arbol-poblano (squares), exposed to different isolates of Phytophthora capsici: PcV01 (black),
PcV51 (red), PcV77 (blue), and PcV90 (yellow) (see Table I).

is fitted to the function

P(χB) =
1

2

(

1 + tanh

(

χB − χBc(L)

"L

))

, (4)

where χBc(L) is the percolation threshold and "L is the width of the
sigmoid transition.46 To take finite-size effects into account, we also
performed simulations using the system size L = 32, 64, 128, and
256. Thus, the percolation threshold in the thermodynamic limit is
estimated by extrapolating the scaling relation χBc − χBc(L) ∝ L−1/ν ,
where ν is the exponent corresponding to the correlation length. It is
well known that the transition width "L scales with the system size
L as "L ∝ L−1/ν .46 From the fit to the percolation probability data,
we found that ν = 4/3, which is in good agreement with the results

reported in the literature for the percolation theory in 2D.47 In Fig. 3,
we show the data analysis to determine the percolation threshold for
the case of the nearest-neighbor square lattice with χA = χB = χ
and I = 0. Under these conditions, we found the critical suscep-
tibility χc = 0.592 73 ± 0.000 06, which is in agreement with the
best known estimation of the percolation threshold for the classical
nearest-neighbor square lattice (0.592 746 21 ± 0.000 000 13).45

III. RESULTS

The first particular case that we analyze is that in which both
types of plants have the same susceptibility (χA = χB = χ). This
case does not imply neither that both plants are the same type nor
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FIG. 6. Phase diagrams for different values of I = 0.0 (first column), 0.1 (second column), 0.5 (third column), and 0.8 (fourth column). Rows correspond to alternate columns
for the nearest neighbor (first row), alternate diagonals for the nearest neighbor (second row), alternate columns for the next-to-nearest neighbor (third row), and alternate
diagonals for the next-to-nearest neighbor (fourth row). Points are the same as in Fig. 5.

that the speed of the propagation front, or the disease, manifests
with identical characteristics in both species. However, the cluster-
ing of diseased plants at the end of the propagation process would
be equivalent to a plantation with only one type of plant.

Figure 4(a) shows the percolation thresholds (χc) for the case
χA = χB. They can be fitted with a q-exponential function48

χc(I, p) =
pc

p(1 + aI/q)q , (5)

where pc is the usual critical probability in site percolation,
a = 0.91 ± 0.03 and 2.1 ± 0.1, q = 2.0 ± 0.4 and 0.68 ± 0.06, for
nearest and next-to-nearest neighbor square lattices, respectively.
The value of parameter q is in good agreement with the reported
values for triangular and honeycomb lattices.22 In Fig. 4(b), we show
the collapse of the percolation thresholds by plotting pχc as a func-
tion of I, where we can see that all of them fit relatively well to
the q-exponential function in Eq. (5). This can be understood as
the collective contribution of the interaction of susceptible plants
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with infected-resistant plants or with inoculated empty cells. Note
that the probability of observing this pair becomes higher as χ or p
decreases, and I increases. Thus, the percolating system looks like a
lattice formed by regular sites and sites involving complex nearest
neighbors.22

One of the most important results for this case is the existence
of a percolation threshold that prevents the formation of a span-
ning cluster of diseased plants even if all the cells have the presence
of the pathogen at the beginning of the propagation process. Such
values are 0.288 83 ± 0.000 07 and 0.164 341 ± 0.000 05 for nearest
and next-to-nearest neighbor square lattices, respectively. These val-
ues are in good agreement with percolation threshold curves for the
square lattices with complex neighborhoods.49,50

On the other hand, the percolation threshold curves for the
general case χA ̸= χB must satisfy the following properties:

1. The curves have to be decreasing since as one susceptibility
increases, the other is expected to decrease.

2. If χA = χB, the results obtained must reproduce the case of a
single species (see Fig. 4).

3. The percolation threshold must be invariant to the exchange A
by B.

Figures 5 and 6 show the phase diagrams obtained using the
algorithm proposed for nearest and next-to-nearest neighbor square
lattices, with I = 0.0, 0.1, 0.5, and 0.8. Here, the case I = 0.0 cor-
responds to the situation when only one cell in the plantation
is inoculated. To exemplify the applications of these results, we
plot into the diagrams the combinations of pairs of susceptibilities
(χA, χB) of three different chili varieties exposed to several strains
of P. capsici (see Table I) reported in Ref. 21. Notice the white zone
where sowing is allowed in 100% of the cells. Those are the com-
binations χA and χB that assure the disease will not disseminate all
over the plantation. Moreover, the shaded zones indicate the max-
imum occupation probability, for each susceptibility combination,
that guarantees the non-emergence of the spanning cluster. The
interpretation of these phase diagrams allows us to choose the most
adequate sowing configuration and plantation density.

In Fig. 5, we show the phase diagram corresponding to the limit
case I = 0.0. It is observed that there are substantial differences in
the regions that allow sowing the entire plantation among the dif-
ferent models. This phenomenon arises as a collective effect due to
differences in the local dissemination of the pathogen in the differ-
ent sowing configurations [see Figs. 2(c)–2(f)]. Notwithstanding the
above, for the same nearest-neighbor definition, this effect is lost as I

TABLE I. Experimental results of the pathogen susceptibilities for different Capsicum
varieties: “chile serrano” (χ s), “chile de arbol” (χ a), and “chile poblano” (χ p), exposed
to several Phytophthora isolates.21

Oomycete χ s χ a χ p

PcV01 0.60 1.0 0.89
PcV51 0.46 0.27 0.76
PcV77 0.64 0.36 0.04
PcV90 0.40 0.10 0.19
Blanck test 0 0 0

increases and the diagrams become similar, as can be noted in Fig. 6
for I = 0.8, where the change in the shape of the white zones for
both intercropping configurations is almost inappreciable. This is
possible since an increase on I rises the numbers of pairs acting as
bridges and the clustering of type A with type B plants is highly pro-
moted so that the system undergoes a process of homogenization.
Consequently, the barrier effect of resistant plants is lost. This is an
indication that there exists a critical value of I for which the use of
one or the other intercropping configuration becomes irrelevant.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have presented the analysis of the perco-
lation threshold for the propagation process of Phytophthora in
two intercropping configurations, alternating columns or diagonals,
over nearest and next-to-nearest neighbor square lattices. The rele-
vance of the determination of this critical value is because, at these
conditions, the probability that the initial infection point be adja-
cent or belong to the spanning cluster becomes greater than zero,
rising as the susceptibilities or the planting density increases. Then
the outbreak could take place on a large part of the plantation.

The most important results are the phase diagrams in Fig. 6,
which can help choose the most convenient intercropping config-
uration and sowing density for a pair of plant types. We found that
for a low fraction of inoculated cells at the beginning of the propaga-
tion process, for nearest neighbor square lattices, the best option is
alternate diagonal plantations since this configuration admits more
combinations of susceptibilities that allow planting at 100% of the
cells. While in the case of next-to-nearest neighbor square lattices,
the best choice is to use the configuration with alternate columns.
On the other hand, when I is large, the disease spreading pro-
cess is indistinguishable for both intercropping configurations. This
means that there exists a critical value for I at which the transition
between the situations described occurs. This effect was observed
when I ≥ 0.5 for both definitions of adjacent neighbors; neverthe-
less, a detailed analysis is necessary for a precise determination of
this threshold.

Considering Phytophthora can survive like saprophytes in
adverse environmental conditions, the disease dissemination over
the spanning cluster may increase the number of cells with pathogen
presence for future cropping cycles. In this case, the yield could be
drastically affected even if plants with higher susceptibility values are
sown in the next farming.

To show the potential use of the diagrams, we included the
combinations of susceptibilities for three chili varieties: “chile de
arbol,” “chile poblano,” and “chile serrano” (points in Figs. 5 and 6),
which are of high commercial value in Mexico. Notice, in particu-
lar, the combination serrano-poblano exposed to the strain PcV77
(blue triangle), with I = 0.1, and the next-to-nearest neighbor [see
Figs. 6(c.2) and 6(d.2)]. In this case, the configuration of alternate
columns allows sowing all the cells in the plantation, while with
alternate diagonals, it is required to leave 20% of empty cells to pre-
vent the formation of a spanning cluster, which supposes a decrease
in the net yield of the plantation. Another example for the same
combination for a different strain (PcV51, red triangles) and I = 0,
over the nearest neighbor [see Figs. 6(a.1) and 6(b.1)], shows that
the entire plantation can be sown if the alternate diagonals are used.
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FIG. 7. Examples of the propagation of Phytophthora on a nearest-neighbor square lattice for two intercropping configurations, alternating columns [(a) and (c)] and diagonals
[(b) and (d)]. The portion of inoculated cells at the beginning of the propagation process is I = 0.1, and these cells are shaded in yellow in (a) and (b). The plant type selected
are “arbol” (A) and “poblano” (P) chili varieties exposed to the Phytophthora strain PcV51 (see Table I for the susceptibility values). In (c) and (d), we show the final state of
the dissemination process. Shaded cells indicate plants affected by the pathogen. In (c), the particular combination of values selected for planting density, susceptibilities,
and the initial portion of inoculated cells promotes the formation of the spanning cluster (cells connected by red lines).

In Fig. 7, we show an example of Phytophthora dissemination under
these conditions. Note that in a plantation with alternate columns,
the spanning cluster has emerged at the end of the propagation pro-
cess. On the other hand, a 10% of empty cells would be required in
an alternate column plantation.

Finally, planting with an intercropping approach taking into
account the conclusions we extracted from the phase diagrams is
an effective alternative to avoid the spreading of Phytophthora when
the spatial homogenization of two (or more) plant types is not suit-
able. On the other hand, a limitation of our proposal is that we
have not taken into account other epidemiological variables. For
example, we have experimentally observed the recuperation and
reinfection of some individuals. Another feature that we have not
yet added to our model is the variability of the maximum distance
the pathogen can travel. This distance distribution should be exper-
imentally determined for each pathogen strain, the particular plant
variety of interest, and other environmental variables such as soil
porosity or humidity. This model also can be extended to ana-
lyze more complex intercropping configurations or to consider a
higher number of plant varieties. Moreover, some other variables
might also be included, such as the care provided by farmers or the
possibility of having more than one type of pathogen in the field.
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We analyze the percolation threshold of square lattices comprising a combination of sites with regular and
extended neighborhoods. We found that the percolation threshold of these composed systems smoothly decreases
with the fraction of sites with extended neighbors. This behavior can be well-fitted by a Tsallis q-Exponential
function. We found a relation between the fitting parameters and the differences in the gyration radius among
neighborhoods. We also compared the percolation threshold with the critical susceptibility of nearest and next-
to-nearest neighbor monoculture plantations vulnerable to the spread of phytopathogen. Notably, the critical
susceptibility in monoculture plantations can be described as a linear combination of two composite systems.
These results allow the refinement of mathematical models of phytopathogen propagation in agroecology. In
turn, this improvement facilitates the implementation of more efficient computational simulations of agricultural
epidemiology that are instrumental in testing and formulating control strategies.

DOI: 10.1103/PhysRevE.109.014304

I. INTRODUCTION

Percolation theory is usually associated with the study of
transport phenomena occurring through porous media [1–3].
This theory arises from the observations made by Broadbent
when he was designing charcoal filters for gas masks and
measuring their efficiency. Later, in collaboration with Ham-
mersley, Broadbent concluded that transporting a fluid (or
individual particles) through a random media with a certain
fraction of open (or closed) bonds defines a new kind of
diffusion process [4]. Between 1954 and 1957, the percolation
theory was formalized and thenceforth studied as a mathe-
matical framework based on geometry and probability [4–6].
In this theory, the simplest way of modeling a porous me-
dia is by means of a square lattice, wherein each cell is
assigned to be occupied with probability p or empty with
the complementary probability 1 − p [3,7]. This assignation
is carried out independently of the occupation state of the
neighbor cells. By construction, the transport phenomena can
only occur across the occupied cells. Notice that for small p
values, there are few occupied cells in the system, and then
the transport phenomenon cannot take place. On the other
hand, if p takes values close to 1, the occupied cells fill the
system, mostly grouped in a single giant cluster, named the
spanning cluster, that connects the system from one side to
the opposite side. The emergence of the spanning cluster in
the system guarantees that the transport phenomenon occurs.

*jorgevc@fcfm.buap.mx
†jhony.ramirezcancino@viep.com.mx

The fundamental problem to solve in percolation theory is
determining the minimal probability value required for the
emergence of the spanning cluster. This critical value is
known as the percolation threshold, which should be esti-
mated for each specific problem [8].

Percolation theory has a wide diversity of applications,
ranging from the study of the formation of galactic structures
to the description of the formation and properties of the quark-
gluon plasma [8–11]. Moreover, the analysis of the connection
properties of the graph defined by social interactions and the
main epidemiological parameters of diseases shed light on the
development of mobility public policies that avoid the spacial
propagation of epidemics [12,13].

Recently, in Refs. [14–17], the authors proposed a novel
application of percolation theory in agronomy as an agroe-
cological strategy to prevent the dissemination of harmful
phytopathogens on plantations. In particular, they analyze the
propagation of Phytophthora (from Greek, literally mean-
ing plant destroyer) zoospores, micro-organisms classified as
oomycetes that cause epiphytic interactions with the most
destructive effects that attack the root of plants and trees in
every corner of the world [18]. These zoospores swim chemo-
tactically toward the plants using flagella, which can disperse
through water films or soil moisture, including those on the
surface of plants [18,19]. Many species of Phytophthora
can persist as saprophytes if the environmental conditions
are not appropriate but become parasitic in the presence of
susceptible hosts [20,21]. Damages produced by this phy-
topathogen primarily concentrate in the root of plants but also
include rotting in seedlings, tubers, corms, the base of the
stem, and other organs. The diseases caused by exposure to
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Phytophthora generate tremendous losses in agronomy and
forestry. Due to the physiology of the oomycetes, most fungi-
cides or antibiotics have no effects on them, motivating the
research on nonchemical strategies that minimize or mitigate
the propagation of the pathogen [18,22,23].

On the other hand, in laboratory experiments or in situ
observation, it has been noted that some plants manifest the
disease after the exposition to the pathogen, while others
do not get sick because some individuals can deploy de-
fense mechanisms against the infestation process (resistant
plants) [14,15]. There are no methods to distinguish what seed
will grow as a resistant plant. This fact allows us to define
the plant susceptibility χ as the probability of an individual
getting ill after the interaction with the phytopathogen, which
can be experimentally measured through the determination of
the survival rate of exposed plants.

In the context of percolation theory, the problem of Phy-
tophthora propagation on a plantation can be modeled as
a transport phenomenon on a regular lattice [14,16]. These
systems are proposed to be studied on square lattices for sim-
plicity. In a first approach, the lattice spacing can be chosen as
the maximal length distance that zoospores can travel before
starving or entering a state of dormancy. This guarantees that
the micro-organisms can be spread over the adjacent plants.
Under these considerations, this problem is directly mapped
to a propagation process occurring on a square lattice with
nearest neighbors, wherein occupied sites correspond to sus-
ceptible plants.

Another relevant ingredient of this model is the fraction
of cells with the pathogen presence at the beginning of the
propagation process. These cells are assumed to be uniformly
and randomly distributed on the plantation. The propagation
process is started in these inoculated cells. By construction,
the zoospores move only at the adjacent cells, and they repro-
duce if they reach a susceptible plant. On the contrary, the
zoospores die or enter into a dormancy state if they arrive
at a resistant plant or an empty cell. However, the inocu-
lated cells at the beginning of the propagation process have
a fascinating behavior if they are adjacent to a susceptible
plant and simultaneously occupy empty cells or cells with
resistant plants. Under this condition, the inoculated cells
act as bridges, connecting plants beyond the neighborhood
definition, as we depict in Fig. 1 for square lattices with
nearest and next-to-nearest neighbors. Moreover, the authors
of Refs. [15,16] suggest that the systems look like a square
lattice with regular sites together with a fraction of sites with
an extended neighborhood. The latter fact motivates the work
presented in this manuscript, wherein we explore the modi-
fications of the percolation threshold due to the existence of
sites with an extended neighborhood in the lattice.

In this work, we introduce the model of site percolation
with a combination of two different nearest neighbor defini-
tions, one with a neighborhood more extended than the other.
These sites with extended neighborhoods play a similar role
to the inoculated cells under the conditions described above.
In the same way as in the percolation-agroecological model,
the number of extended sites is controlled by the probability
I . We compute the percolation threshold through computer
simulations for a wide range of neighborhood combinations
and I ranging from 0 to 1.

FIG. 1. Sketch of the interaction of an inoculated empty cell
adjacent to a susceptible plant on (a) 2N and (b) 3N plantations.
Despite Phytophthora zoospores moving accordingly to the neighbor
definition (solid arrows), they can connect susceptible plants beyond
the vicinity (dotted arrows), forming bridges that promote the forma-
tion of the spanning cluster.

The plan of the paper is as follows. In Sec. II, we provide
the simulation and data analysis methods. In Sec. III, we show
our results of the percolation threshold for the systems of
interest. In Sec. IV, we discuss the applications of composite
systems to model the propagation of phytopathogens on plan-
tations. Finally, Sec. V contains the discussion of our results,
conclusions, and perspectives.

II. SIMULATION METHOD AND DATA ANALYSIS

We use the Newman-Ziff simulation scheme [24,25] to
determine the site percolation threshold of composite square
lattices. This algorithm consists of measuring a particular ob-
servable On after adding exactly n sites. Therefore, the average
⟨O⟩ is computed at a particular p value by convoluting the On
determinations with the fluctuations of the occupation prob-
ability. In Fig. 2 we show the neighborhood definitions used
in this work: (a) nearest neighbors (2N), (b) next-to-nearest
neighbors (3N). For the sake of notation, we denote as Ext1,
Ext2, and Ext3 the extended neighborhoods in Figs. 2(c), 2(d)
and 2(e), respectively. We explore the percolation threshold of
square lattices considering all the possible pair combinations
of these nearest neighbor definitions. In what follows, for a
given pair combination, we call extended sites those with the
larger neighborhood; meanwhile, the sites with the smaller
ones are named regular sites.

In the simulation, we randomly add site by site. Each added
site is randomly chosen to be regular or extended with proba-
bilities 1 − I and I , respectively. Since in the lattice there are
sites with two kinds of neighborhood definitions, we must pay
special attention to the clustering process, which is performed
by using the Union-Find algorithm. To do this, we assign
different labels to sites in the system. However, if two sites
belong to the same cluster, we update their labels to have the
same value. For each site added, we first check the occupation
states of every cell in the regular vicinity, and the site is
merged with the cluster to which the occupied neighbor sites
belong. Then, the complementary extended neighborhood is
checked, but the clustering process fulfills the following rules:
(i) if the added site is regular, it is only merged with the
occupied extended sites; (ii) otherwise, the added extended
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FIG. 2. Neighborhoods discussed in this manuscript: (a) 2N, (b) 3N, (c) Ext1, (d) Ext2, and (e) Ext3.

site is merged with all the occupied sites. In the simulation
process, we consider systems with free boundary conditions.

The simulation is stopped when the spanning cluster
emerges in the system. This occurs when, for the first time,
sites on opposite sides of the lattice acquire the same label. At
this point, we store the number of sites added. Using the infor-
mation from 106 simulations, we construct the probabilities fn
and Fn =

∑n
k=1 fk of observing the emergence of the spanning

cluster after adding exactly and at most n sites, respectively.
In the Newman-Ziff simulation scheme for a square lattice

with L2 sites, the average of an observable O at an arbitrary
value of the occupation probability is computed as

O(p) =
L2∑

n=1

OnB(L2, n, p), (1)

where On is the value of the observable when there are exactly
n occupied sites in the system, and B(L2, n, p) is the probabil-
ity mass function of the binomial distribution, which counts
the fluctuations of the number of occupied sites for a system
filled with occupation probability p. Therefore, we compute
the percolation probability by plugging the distribution Fn
in (1), that is,

PL(p) =
L2∑

n=1

FnB(L2, n, p). (2)

In Eq. (2), we have added the subscript L to denote the per-
colation probability dependence on the system size. To avoid
the difficulties that carry the computation of the factorial of
large numbers, we compute the binomial weights by using the
following recursive formula [25]:

B(L2, n, p) =

⎧
⎨

⎩
B(L2, n − 1, p) L2−n+1

n
p

1−p if n > nm,

B(L2, n + 1, p) n+1
L2−n

1−p
p if n < nm,

where nm = pL2 is the n-value where the probability mass
function of the binomial distribution takes its maximum value.
Moreover, we set B(L2, nm, p) = 1. In this way, the perco-
lation probability (2) must be normalized by dividing by∑L2

n=1 B(L2, n, p).
After the computation of the percolation probability, the

data set is fitted to the sigmoid function

PL(p) = 1
2

[
1 + tanh

(
p − pcL

"L

)]
, (3)

where pcL is the estimation of the percolation threshold under
the conditions of the systems in the simulation, and "L is
the width of the sigmoid transition [26]. To take into account

finite-size effects on the percolation threshold, we perform
simulations with different system sizes, L = 32, 48, 64, 96,
128, 192, 256, 384, and 512. Moreover, for each case under
study, we determine the percolation threshold for a wide va-
riety of values of the fraction of extended sites, starting at
I = 0 until I = 1 with increments of "I = 0.05. The data
analysis is performed with the information of 106 simulations
for each estimation of pcL. In all cases, the well-known scaling
relation "L ∝ L−1/ν for the width of the sigmoid transition is
satisfied with 1/ν ∼ 0.75, which is the universal value of the
exponent corresponding to the correlation length found for 2D
percolation systems [27].

Finally, we estimate the percolation threshold in the ther-
modynamic limit (pc) by analyzing the scaling relation of
pc − pcL as a function of L. It has been previously ob-
served that the free boundary conditions led to pc − pcL ∝
L−2/ν [10], which is a stronger finite-size effect than the
universal scaling relation for the percolation threshold for
finite lattices, given by pc − pcL ∝ L−1/ν [28]. We observe
a good agreement of our data sets with the latter scaling
relation. Therefore, we estimate the percolation threshold in
the thermodynamic limit (L → ∞) by extrapolating the trend
of pcL as a function of L−2/ν . In Sec. III, we summarize our
estimations of the percolation threshold for all the possible
combinations of neighborhood pairs depicted in Fig. 2.

III. RESULTS

We recall that there are sites with two different neighbor-
hood definitions in the system. The number of each type of
site is controlled by the parameter I . Given the value of I , the
probability of adding a regular or extended site is 1 − I or I ,
respectively. Notice that there are two limit cases. When I = 0
or 1, only regular or extended sites are added to the system.
These results are summarized in Table I. Our estimations of pc
for square lattices with 2N and 3N neighbors are in agreement
with the best estimation of the percolation threshold reported
in the literature. Moreover, for the extended neighborhoods

TABLE I. Percolation threshold, coordination number, and gyra-
tion radius of the neighborhoods discussed in this manuscript.

Neighborhood Coordination number pc R2
g

2N [Fig. 2(a)] 4 0.592741(5) 4/5
3N [Fig. 2(b)] 8 0.40721(1) 4/3
Ext1 [Fig. 2(c)] 12 0.289117(9) 28/13
Ext2 [Fig. 2(d)] 16 0.20900(1) 60/17
Ext3 [Fig. 2(e)] 24 0.16466(2) 4
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FIG. 3. Percolation threshold of composite square lattices (figures) together with their corresponding fitting function (solid lines). The
neighborhood combinations are the following: (a) 2N+3N (empty red squares), (b) 2N+Ext1 (empty red circles), (c) 2N+Ext2 (empty red
triangles), (d) 2N+Ext3 (empty red inverted triangles), (e) 3N+Ext1 (empty red diamonds), (f) 3N+Ext2 (filled green squares), (g) 3N+Ext3
(filled green circles), (h) Ext1+Ext2 (filled green triangles), (i) Ext1+Ext3 (filled green inverted triangles), and (j) Ext2+Ext3 (filled green
diamonds).

Ext1, Ext2, Ext3, we have improved the previous estimations
performed by Malarz in two digits [29,30].

In Fig. 3, we show our estimations of the percolation
threshold in the thermodynamic limit for square lattices with
a combination of regular and extended sites as a function of
I . In all cases, pc smoothly decreases from pc,reg to pc,ext
as I increases, where pc,reg and pc,ext denote the percolation
threshold for square lattices with only regular or extended
sites, respectively. Despite the fact that the mean coordina-
tion number of the composite system z̄ = zreg + I (zext − zreg)
has a linear dependence on I , the percolation threshold for
these systems does not response linearly nor inversely as a
function of I . Notice that, at low values of the fraction of
extended sites, the percolation threshold rapidly varies from
pc,reg because of the presence of the extended sites. In fact,
pc decays exponentially for low values of I , as further dis-
cussed below. On the contrary, for values of I close to 1, pc
asymptotically reaches the value of pc,ext, which means that
the connectivity of the system is primarily due to the extended
sites.

Additionally, we found that the percolation threshold of the
system with combined neighbor definitions can be well fitted
with a Tsallis q-Exponential function

pc = pc,ext + (pc,reg − pc,ext )
(

1 − I
λn

)n

, (4)

where n = 1/(1 − q) defines the q parameter of the Tsallis
function. In particular, for the cases 2N+Ext2 and 2N+Ext3,
it is found that n takes large values; thus, we replace the
Tsallis q-Exponential function for an exponential function.
Table II summarizes the value of the fitting parameters for the
cases discussed in this paper. The obtained fitting functions
are shown as solid lines in Fig. 3. It is worth mentioning that
the obtained n-values lead to q < 1, so the range of the fitting
function is restricted to be I < λn [31], for which in almost
all cases it occurs that λn > 1, except for the combination

2N+3N. In this case, we obtain λn ≈ 0.98, and pc takes
complex values for I > 0.98. However, the imaginary part of
pc is of the order of 10−6 for 0.98 < I ! 1, which can be
neglected, and the fitting function is extended to the rest of
the interval [0,1] by taking the real part of (4).

Note that the series expansion of (4) around I = 0 approxi-
mates the Tsallis q-Exponential to an exponential decay given
by

pc − pc,ext ∝ 1 − I
λ

+ O(I2) ≈ e−I/λ, (5)

where the factor 1/λ is the decay constant. In Fig. 4, we show
this exponential behavior for all the neighborhood combina-
tions discussed in this manuscript. In some instances, the pc
curve is scaled by a factor of 10A to improve visualization.
Note the agreement of the estimated percolation threshold for
low values of I with the exponential function with a constant
decay 1/λ, where λ is taken from Table II.

TABLE II. Fit parameter values obtained for the percolation
threshold of all the composite systems discussed in this manuscript.

Neighborhood λ n

2N+3N 0.488(7) 2.01(2)
2N+Ext1 0.33(1) 3.8(1)
2N+Ext2 0.201(1) > 10
2N+Ext3 0.183(1) > 10
3N+Ext1 0.428(5) 2.54(3)
3N+Ext2 0.28(3) 6.7(5)
3N+Ext3 0.25(3) 9.0(8)
Ext1+Ext2 0.40(1) 2.95(7)
Ext1+Ext3 0.33(1) 4.0(1)
Ext2+Ext3 0.432(5) 2.48(2)

014304-4



SITE PERCOLATION THRESHOLD OF COMPOSITE … PHYSICAL REVIEW E 109, 014304 (2024)

-10

-5

 0

 5

 10

 15

 20

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

ln
(p

c)
+A

ln
(1

0)

FIG. 4. Exponential behavior of composite systems at low values
of I (figures) together with their exponential approximation (dashed
lines). Figures and colors are the same as in Fig. 3.

Moreover, we found relationships between the fitting pa-
rameters and the difference in the radius of gyration of the
extended and regular neighborhoods (see Fig. 5) as follows:

λ = c2e−c1(Rg,ext−Rg,reg ), (6)

1
n

= m(Rg,ext − Rg,reg) + b, (7)

with c1 = 1.13(3), c2 = 0.62(2), m = −0.62(4), and b =
0.61(3). Rg,ext and Rg,reg are the gyration radius of the extended
and regular neighborhoods, respectively. The gyration radius
is computed as

R2
g = 1

z + 1

∑

k

zkr2
k , (8)

where zk is the number of possible neighboring sites at a
distance rk from the center of the figure, and z is the coor-
dination number. In Table I, we show the values of R2

g for the
neighborhood definitions under study. For the cases 2N+Ext2

 0.2
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 0.5

 0.2  0.4  0.6  0.8  1  1.2
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1/
n

Rg,ext-Rg,reg

FIG. 5. Trend of the fit parameters (a) λ and (b) 1/n as functions
of the difference in the neighborhood gyration radius of composite
systems (figures). Solid lines correspond to the fitting functions of
Eqs. (6) and (7), respectively. Shaded regions are the error propaga-
tion of the fitting functions. Figures and colors are the same as in
Fig. 3.

and 2N+Ext3, we take 1/n →0. In Sec. IV, we discuss how
our results could be useful for understanding and modeling
the propagation of phytopathogens on plantations.

IV. APPLICATION TO AGROECOLOGY

The propagation of Phytophthora zoospores has been pre-
viously studied as a percolation problem in Refs. [14–16]. In
these studies, the authors discussed the characteristics needed
for the formation of a spanning cluster of diseased and sus-
ceptible plants. The latter situation marks the onset of the
outbreak on the plantation. It was shown that the percolation
threshold depends substantially on the geometry of the plan-
tation and the percentage of inoculated cells at the beginning
of the propagation process. Inoculated sites that, at the same
time, are empty or occupied with a resistant plant play the
role of bridges connecting sites further away from the neigh-
borhood definition.

Let us comment on the computational implementation for a
monoculture plantation. The plantation is modeled as a regular
lattice where its cells are assigned two independent occupancy
states: inoculation and occupation by a susceptible plant. In
this way, it is convenient to designate the cells containing
active phytopathogens at the beginning of the propagation
process. These inoculated cells are considered uniformly dis-
tributed and independent of the inoculated states of their
neighbors. Then, using the Newman-Ziff algorithm, suscep-
tible plants are added one by one. The clustering process
between adjacent cells satisfies the following rules: (i) both
sites are occupied with susceptible plants, or (ii) the neigh-
boring site is inoculated. Although they are simple rules, the
presence of the inoculated cells has a relevant impact on the
formation of clusters, and thus on the percolation threshold.
The simulation is stopped with the emergence of the spanning
cluster of susceptible or diseased plants. The estimation of the
percolation threshold is carried out by analyzing the generated
data. Figure 6 shows the results of the percolation threshold as
a function of the percentage of inoculated cells at the begin-
ning of the propagation process for a plantation configured
by square lattices with nearest and next-to-nearest neighbors,
previously reported in Refs. [15,16].

In the context of this model, the Phytophthora propagation
can only occur on susceptible plants, so the susceptibility
takes the role of the occupation probability of traditional
percolation lattices. Therefore, the percolation threshold is
directly associated with the critical susceptibility χc of the
plants. This means that the plantation should be sowed with
plants having a susceptibility less than χc to avoid the out-
break. Similarly to the cases of square lattices with a fraction
of extended neighbors, the critical susceptibility decreases as
I grows. It is worth mentioning that there exists a minimal
susceptible value that allows sowing the entire plantation even
when all the cells are inoculated. However, considering that
Phytophthora can survive under adverse environmental con-
ditions, the management of the plantation is crucial in order
to prevent outbreaks in future farming cycles.

We recall that this agroecological model connects sites
over the regular neighborhood definition. However, the per-
colation threshold evolves similarly to square lattices with a
fraction of extended neighbor sites. Here, the regular sites
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FIG. 6. Comparison between the percolation threshold of com-
posite square lattices, the critical susceptibility of the agroecological
model, and the linear combination approximation of Eqs. (9) and (10)
(solid lines). (a) Case of 2N plantations. Squares and circles are the
percolation thresholds of 2N+3N and 2N+Ext1 composite systems,
respectively. Pentagons are the critical susceptibility of the agroe-
cological model. (b) Case of 3N plantations. Squares and circles
are the percolation thresholds of 3N+Ext2 and 3N+Ext3 composite
systems, respectively. Semifilled circles are the critical susceptibility
of the agroecological model.

correspond to the neighborhood definition used for cluster-
ing. Meanwhile, the extended sites must be determined by
analyzing how the presence of the inoculated cells modifies
the neighbor definition to connect susceptible plants, as de-
picted in Fig. 1. In what follows, we refer to 2N and 3N
plantations as those sowed in a configuration based on 2N and
3N neighborhoods, respectively. Particularly for 2N and 3N
plantations, we determine that the extended neighborhoods
are 3N and Ext2 at low I-values but become Ext1 and Ext3
at high I-values, respectively.

Notice that the critical susceptibilities for 2N and 3N plan-
tations are bounded as follows (see Fig. 6):

pc,2N+3N ! χ2N ! pc,2N+Ext1,

pc,3N+Ext2 ! χ3N ! pc,3N+Ext3,

where pc,reg+ext denotes the percolation threshold for the
combination of neighborhoods reg and ext. For the sake
of notation, we indicate the critical susceptibility by χ .
Moreover, we found that the critical susceptibilities can be
well-reproduced by the following linear combinations:

χ2N = (1 − I )pc,2N+3N + I pc,2N+Ext1, (9)

χ3N = (1 − I )pc,3N+Ext2 + I pc,3N+Ext3. (10)

Equations (9) and (10) are shown in Fig. 6 as solid lines. We
also find an exponential behavior for the critical susceptibili-
ties at low I values:

χ2N ∝ 1 − I
λ′

1
+ O(I2) ≈ e−I/λ′

1 , (11)

χ3N ∝ 1 − I
λ′

2
+ O(I2) ≈ e−I/λ′

2 , (12)

where

λ′
1 = λ2N+3N

1 − pc,3N

pc,2N

and λ′
2 = λ3N+Ext2

1 − pc,Ext2

pc,3N

. (13)

By discussing the case of 2N plantations, we now illustrate
the applicability of Eqs. (9) and (10). Equation (9) indicates
that the combinations 2N+3N and 2N+Ext1 are picked with
probabilities 1 − I and I , respectively. By construction, the
regular and extended sites are also determined with probabil-
ities 1 − I and I , respectively. All the possibilities combine
to give the probabilities 1 − I , I (1 − I ), and I2 of the added
site has vicinity 2N, 3N, and Ext1, respectively. In the limit
of low I , the added sites in simulations are mostly 2N, with a
few ones with the 3N vicinity. As I rises, the number of sites
with extended neighborhoods takes place and the percolation
threshold decreases. In the limit of high I , the system is mainly
formed by Ext1 sites. At this point, the system becomes homo-
geneous, and the critical susceptibility approaches pc,2N+Ext1.
Using this framework, all the effects of inoculated cells are
taken into account at once by incorporating sites with ex-
tended neighborhoods. Note that Eqs. (9) and (10) imply that
composite systems discussed in this manuscript accurately
describe the agroecology model in the limits I = 0 and 1.
Nevertheless, this model resembles percolation systems com-
prising three neighbor definitions for intermediate I values.
Therefore, agroecological applications can be described by a
percolation system comprising more than two neighborhood
definitions.

V. CONCLUSIONS

In this work, inspired by the problem of the propagation
of Phytophthora zoospores on plantations, we introduced a
percolation model on square lattices that includes sites with
a combination of two different neighborhood definitions. In
particular, we explore all possible pair combinations of five
neighborhoods that extend beyond the next-to-nearest defini-
tion, which are depicted in Fig. 2. By using computational
simulations, we estimate the percolation threshold for all
those systems as a function of the fraction of sites with
extended vicinity.

We found that the percolation threshold of systems with
combined neighborhoods smoothly decreases from pc,reg to
pc,ext, which can be well-fitted by the q-Exponential func-
tion as seen in Eq. (4). In the limit of low values of the
fraction of sites with the extended neighborhood, the perco-
lation threshold exponentially decays with I , where the rate
constant is the inverse of the scale (λ) of (4). Moreover, we
related the q-Exponential parameters to the differences in the
radius of gyration between the regular and extended neigh-
borhoods. Explicitly, λ ∝ e−m(Rg,ext−Rg,reg ) and 1/n ∼ (Rg,ext −
Rg,reg). However, the latter relations may no longer be valid
for combinations with very small differences in the radius of
gyration, as in the case of the combination Ext2+Ext3, whose
fitting parameters deviate from the trend of the other cases.
Further analysis is required to corroborate this hypothesis for
systems with neighborhoods extended beyond those discussed
in this manuscript.

Additionally, we compared our estimations of the per-
colation threshold with the results reported for the critical
susceptibility of monoculture plantations. In the context of
the agroecological model, I corresponds to the fraction of
inoculated cells at the beginning of the propagation process.
Similar to the extended sites in the model presented in this
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manuscript, these cells act as bridges that connect suscepti-
ble plants beyond the neighbor definition of the lattice that
models the plantation when they are placed in empty cells or
with a resistant plant. It is worth mentioning that the critical
susceptibilities for 2N and 3N plantations are well-described
by the linear combinations [see Eqs. (9) and (10)] of the perco-
lation threshold of the composites 2N+3N and 2N+Ext1 and
3N+Ext2 and 3N+Ext3 (see Fig. 6), respectively. We also
found that the critical susceptibility behaves as an exponential
decay in the limit of low values of I . In Eq. (13) we report
the decay constant for 2N and 3N plantations. Note that the
agroecological model can also motivate the study of systems
with more than two extended neighborhoods.

This work can be broadened in different directions. One
possibility is to consider other regular lattices, for instance
the triangular or the honeycomb. Analyzing the bond or the
joint site-bond percolation model under this approach would

be meaningful. Another possibility consists of including the
linear combination approach in more complex situations, for
example in polyculture or structured plantations. It is worth
noticing that all these perspectives are inspired by the agroe-
cological model.
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